Upload src/streamlit_app.py with huggingface_hub
Browse files- src/streamlit_app.py +349 -37
src/streamlit_app.py
CHANGED
|
@@ -6,6 +6,302 @@ import matplotlib.pyplot as plt
|
|
| 6 |
import yaml
|
| 7 |
import os
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
# Import models
|
| 10 |
from src.mobilenetv2_model import LandslideModel as MobileNetV2Model
|
| 11 |
from src.vgg16_model import LandslideModel as VGG16Model
|
|
@@ -21,6 +317,23 @@ from src.se_resnext50_32x4d_model import LandslideModel as SEResNeXt50_32X4DMode
|
|
| 21 |
from segformer_model import LandslideModel as SegFormerB2Model
|
| 22 |
from inceptionresnetv2_model import LandslideModel as InceptionResNetV2Model
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
# Load the configuration file
|
| 25 |
config = """
|
| 26 |
model_config:
|
|
@@ -55,21 +368,14 @@ logging_config:
|
|
| 55 |
|
| 56 |
config = yaml.safe_load(config)
|
| 57 |
|
| 58 |
-
# Model descriptions
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
"DeepLabV3+": {"path": "deeplabv3.pth", "type": "deeplabv3+", "description": "DeepLabV3+ is an advanced model for semantic image segmentation."},
|
| 67 |
-
"DenseNet121": {"path": "densenet121.pth", "type": "densenet121", "description": "DenseNet121 is a densely connected convolutional network for image classification and segmentation."},
|
| 68 |
-
"ResNeXt50_32X4D": {"path": "resnext50-32x4d.pth", "type": "resnext50_32x4d", "description": "ResNeXt50_32X4D is a highly modularized network aimed at improving accuracy."},
|
| 69 |
-
"SEResNet50": {"path": "se_resnet50.pth", "type": "se_resnet50", "description": "SEResNet50 is a ResNet model with squeeze-and-excitation blocks for better feature recalibration."},
|
| 70 |
-
"SEResNeXt50_32X4D": {"path": "se_resnext50_32x4d.pth", "type": "se_resnext50_32x4d", "description": "SEResNeXt50_32X4D combines ResNeXt and SE blocks for improved performance."},
|
| 71 |
-
"SegFormerB2": {"path": "segformer.pth", "type": "segformer_b2", "description": "SegFormerB2 is a transformer-based model for semantic segmentation."},
|
| 72 |
-
"InceptionResNetV2": {"path": "inceptionresnetv2.pth", "type": "inceptionresnetv2", "description": "InceptionResNetV2 is a hybrid model combining Inception and ResNet architectures."},
|
| 73 |
}
|
| 74 |
|
| 75 |
# Streamlit app
|
|
@@ -88,18 +394,13 @@ st.markdown("""
|
|
| 88 |
st.sidebar.title("Model Selection")
|
| 89 |
model_option = st.sidebar.radio("Choose an option", ["Select a single model", "Run all models"])
|
| 90 |
if model_option == "Select a single model":
|
| 91 |
-
|
| 92 |
-
config['model_config']['model_type'] =
|
| 93 |
-
|
| 94 |
-
model_class = DeepLabV3PlusModel
|
| 95 |
-
else:
|
| 96 |
-
model_class = locals()[model_type.replace("-", "") + "Model"]
|
| 97 |
-
model_path = model_descriptions[model_type]['path']
|
| 98 |
-
|
| 99 |
# Display model details in the sidebar
|
| 100 |
-
st.sidebar.markdown(f"**Model
|
| 101 |
-
st.sidebar.markdown(f"**Model
|
| 102 |
-
st.sidebar.markdown(f"**Description:** {
|
| 103 |
|
| 104 |
# Main content
|
| 105 |
st.header("Upload Data")
|
|
@@ -193,19 +494,30 @@ if uploaded_files:
|
|
| 193 |
|
| 194 |
else:
|
| 195 |
# Process the image with each model
|
| 196 |
-
for
|
| 197 |
-
st.write(f"Using model: {
|
| 198 |
-
if model_name == "DeepLabV3+":
|
| 199 |
-
model_class = DeepLabV3PlusModel
|
| 200 |
-
else:
|
| 201 |
-
model_class = locals()[model_name.replace("-", "") + "Model"]
|
| 202 |
-
model_path = model_info['path']
|
| 203 |
config['model_config']['model_type'] = model_info['type']
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
-
#
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
# Make prediction
|
| 211 |
with torch.no_grad():
|
|
|
|
| 6 |
import yaml
|
| 7 |
import os
|
| 8 |
|
| 9 |
+
# Import models
|
| 10 |
+
from src.mobilenetv2_model import LandslideModel as MobileNetV2Model
|
| 11 |
+
from src.vgg16_model import LandslideModel as VGG16Model
|
| 12 |
+
from src.resnet34_model import LandslideModel as ResNet34Model
|
| 13 |
+
from src.efficientnetb0_model import LandslideModel as EfficientNetB0Model
|
| 14 |
+
from src.mitb1_model import LandslideModel as MiTB1Model
|
| 15 |
+
from src.inceptionv4_model import LandslideModel as InceptionV4Model
|
| 16 |
+
from src.densenet121_model import LandslideModel as DenseNet121Model
|
| 17 |
+
from src.deeplabv3plus_model import LandslideModel as DeepLabV3PlusModel
|
| 18 |
+
from src.resnext50_32x4d_model import LandslideModel as ResNeXt50_32X4DModel
|
| 19 |
+
from src.se_resnet50_model import LandslideModel as SEResNet50Model
|
| 20 |
+
from src.se_resnext50_32x4d_model import LandslideModel as SEResNeXt50_32X4DModel
|
| 21 |
+
from src.segformer_model import LandslideModel as SegFormerB2Model
|
| 22 |
+
from src.inceptionresnetv2_model import LandslideModel as InceptionResNetV2Model
|
| 23 |
+
|
| 24 |
+
# Define available models
|
| 25 |
+
AVAILABLE_MODELS = {
|
| 26 |
+
"mobilenetv2": {"name": "MobileNetV2", "type": "mobilenet_v2"},
|
| 27 |
+
"vgg16": {"name": "VGG16", "type": "vgg16"},
|
| 28 |
+
"resnet34": {"name": "ResNet34", "type": "resnet34"},
|
| 29 |
+
"efficientnetb0": {"name": "EfficientNetB0", "type": "efficientnet_b0"},
|
| 30 |
+
"mitb1": {"name": "MiTB1", "type": "mitb1"},
|
| 31 |
+
"inceptionv4": {"name": "InceptionV4", "type": "inception_v4"},
|
| 32 |
+
"densenet121": {"name": "DenseNet121", "type": "densenet121"},
|
| 33 |
+
"deeplabv3plus": {"name": "DeepLabV3Plus", "type": "deeplabv3plus"},
|
| 34 |
+
"resnext50": {"name": "ResNeXt50", "type": "resnext50_32x4d"},
|
| 35 |
+
"seresnet50": {"name": "SEResNet50", "type": "se_resnet50"},
|
| 36 |
+
"seresnext50": {"name": "SEResNeXt50", "type": "se_resnext50_32x4d"},
|
| 37 |
+
"segformerb2": {"name": "SegFormerB2", "type": "segformer_b2"},
|
| 38 |
+
"inceptionresnetv2": {"name": "InceptionResNetV2", "type": "inception_resnet_v2"}
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
# Model descriptions with their respective types and descriptions
|
| 42 |
+
MODEL_DESCRIPTIONS = {
|
| 43 |
+
model_key: {
|
| 44 |
+
"type": model_info["type"],
|
| 45 |
+
"description": f"{model_info['name']} - A model for landslide detection and segmentation.",
|
| 46 |
+
"name": model_info["name"]
|
| 47 |
+
}
|
| 48 |
+
for model_key, model_info in AVAILABLE_MODELS.items()
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
# Load the configuration file
|
| 52 |
+
config = """
|
| 53 |
+
model_config:
|
| 54 |
+
model_type: "mobilenet_v2"
|
| 55 |
+
in_channels: 14
|
| 56 |
+
num_classes: 1
|
| 57 |
+
encoder_weights: "imagenet"
|
| 58 |
+
wce_weight: 0.5
|
| 59 |
+
|
| 60 |
+
dataset_config:
|
| 61 |
+
num_classes: 1
|
| 62 |
+
num_channels: 14
|
| 63 |
+
channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
|
| 64 |
+
normalize: False
|
| 65 |
+
|
| 66 |
+
train_config:
|
| 67 |
+
dataset_path: ""
|
| 68 |
+
checkpoint_path: "checkpoints"
|
| 69 |
+
seed: 42
|
| 70 |
+
train_val_split: 0.8
|
| 71 |
+
batch_size: 16
|
| 72 |
+
num_epochs: 100
|
| 73 |
+
lr: 0.001
|
| 74 |
+
device: "cuda:0"
|
| 75 |
+
save_config: True
|
| 76 |
+
experiment_name: "mobilenet_v2"
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
config = yaml.safe_load(config)
|
| 80 |
+
|
| 81 |
+
# Streamlit app
|
| 82 |
+
st.set_page_config(page_title="Landslide Detection", layout="wide")
|
| 83 |
+
|
| 84 |
+
st.title("Landslide Detection")
|
| 85 |
+
st.markdown("""
|
| 86 |
+
## Instructions
|
| 87 |
+
1. Select a model from the sidebar or choose to run all models.
|
| 88 |
+
2. Upload one or more `.h5` files.
|
| 89 |
+
3. The app will process the files and display the input image, prediction, and overlay.
|
| 90 |
+
4. You can download the prediction results.
|
| 91 |
+
""")
|
| 92 |
+
|
| 93 |
+
# Sidebar for model selection
|
| 94 |
+
st.sidebar.title("Model Selection")
|
| 95 |
+
model_option = st.sidebar.radio("Choose an option", ["Select a single model", "Run all models"])
|
| 96 |
+
|
| 97 |
+
if model_option == "Select a single model":
|
| 98 |
+
selected_model_key = st.sidebar.selectbox("Select Model", list(MODEL_DESCRIPTIONS.keys()))
|
| 99 |
+
selected_model_info = MODEL_DESCRIPTIONS[selected_model_key]
|
| 100 |
+
config['model_config']['model_type'] = selected_model_info['type']
|
| 101 |
+
|
| 102 |
+
# Display model details in the sidebar
|
| 103 |
+
st.sidebar.markdown("### Model Details")
|
| 104 |
+
st.sidebar.markdown(f"**Model Name:** {selected_model_info['name']}")
|
| 105 |
+
st.sidebar.markdown(f"**Model Type:** {selected_model_info['type']}")
|
| 106 |
+
st.sidebar.markdown(f"**Description:** {selected_model_info['description']}")
|
| 107 |
+
|
| 108 |
+
# Main content
|
| 109 |
+
st.header("Upload Data")
|
| 110 |
+
|
| 111 |
+
# Initialize session state for error tracking if not exists
|
| 112 |
+
if 'upload_errors' not in st.session_state:
|
| 113 |
+
st.session_state.upload_errors = []
|
| 114 |
+
|
| 115 |
+
uploaded_files = st.file_uploader(
|
| 116 |
+
"Choose .h5 files...",
|
| 117 |
+
type="h5",
|
| 118 |
+
accept_multiple_files=True,
|
| 119 |
+
help="Upload your .h5 files here. Maximum file size is 200MB."
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
if uploaded_files:
|
| 123 |
+
for uploaded_file in uploaded_files:
|
| 124 |
+
st.write(f"Processing file: {uploaded_file.name}")
|
| 125 |
+
st.write(f"File size: {uploaded_file.size} bytes")
|
| 126 |
+
|
| 127 |
+
with st.spinner('Classifying...'):
|
| 128 |
+
try:
|
| 129 |
+
# Read the file directly using BytesIO
|
| 130 |
+
import io
|
| 131 |
+
bytes_data = uploaded_file.getvalue()
|
| 132 |
+
bytes_io = io.BytesIO(bytes_data)
|
| 133 |
+
|
| 134 |
+
with h5py.File(bytes_io, 'r') as hdf:
|
| 135 |
+
if 'img' not in hdf:
|
| 136 |
+
st.error(f"Error: 'img' dataset not found in {uploaded_file.name}")
|
| 137 |
+
continue
|
| 138 |
+
|
| 139 |
+
data = np.array(hdf.get('img'))
|
| 140 |
+
data[np.isnan(data)] = 0.000001
|
| 141 |
+
channels = config["dataset_config"]["channels"]
|
| 142 |
+
image = np.zeros((128, 128, len(channels)))
|
| 143 |
+
|
| 144 |
+
for i, band in enumerate(channels):
|
| 145 |
+
image[:, :, i] = data[band-1]
|
| 146 |
+
|
| 147 |
+
selected_channels = [image[:, :, i] for i in range(3)]
|
| 148 |
+
image = np.transpose(image, (2, 0, 1))
|
| 149 |
+
|
| 150 |
+
if model_option == "Select a single model":
|
| 151 |
+
# Get the model class from AVAILABLE_MODELS
|
| 152 |
+
model_class_name = AVAILABLE_MODELS[selected_model_key]['name'].replace('-', '') + 'Model'
|
| 153 |
+
model_class = locals()[model_class_name]
|
| 154 |
+
|
| 155 |
+
# Initialize model downloader
|
| 156 |
+
from model_downloader import ModelDownloader
|
| 157 |
+
downloader = ModelDownloader()
|
| 158 |
+
|
| 159 |
+
try:
|
| 160 |
+
# Download/get model path
|
| 161 |
+
model_path = downloader.download_model(selected_model_key)
|
| 162 |
+
st.info(f"Using model from: {model_path}")
|
| 163 |
+
|
| 164 |
+
# Load the model
|
| 165 |
+
model = model_class(config)
|
| 166 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=False)
|
| 167 |
+
model.eval()
|
| 168 |
+
|
| 169 |
+
# Make prediction
|
| 170 |
+
with torch.no_grad():
|
| 171 |
+
prediction = model(torch.from_numpy(image).unsqueeze(0).float())
|
| 172 |
+
prediction = torch.sigmoid(prediction).numpy()
|
| 173 |
+
|
| 174 |
+
st.header(f"Prediction Results - {selected_model_info['name']}")
|
| 175 |
+
|
| 176 |
+
# Create columns for input image, prediction, and overlay
|
| 177 |
+
col1, col2, col3 = st.columns(3)
|
| 178 |
+
|
| 179 |
+
# Display input image
|
| 180 |
+
with col1:
|
| 181 |
+
st.write("Input Image")
|
| 182 |
+
plt.figure(figsize=(8, 8))
|
| 183 |
+
plt.imshow(selected_channels[0], cmap='viridis')
|
| 184 |
+
plt.colorbar()
|
| 185 |
+
plt.axis('off')
|
| 186 |
+
st.pyplot(plt)
|
| 187 |
+
|
| 188 |
+
# Display prediction
|
| 189 |
+
with col2:
|
| 190 |
+
st.write("Prediction")
|
| 191 |
+
plt.figure(figsize=(8, 8))
|
| 192 |
+
plt.imshow(prediction.squeeze(), cmap='viridis')
|
| 193 |
+
plt.colorbar()
|
| 194 |
+
plt.axis('off')
|
| 195 |
+
st.pyplot(plt)
|
| 196 |
+
|
| 197 |
+
# Display overlay
|
| 198 |
+
with col3:
|
| 199 |
+
st.write("Overlay")
|
| 200 |
+
plt.figure(figsize=(8, 8))
|
| 201 |
+
plt.imshow(selected_channels[0], cmap='viridis')
|
| 202 |
+
plt.imshow(prediction.squeeze(), cmap='viridis', alpha=0.5)
|
| 203 |
+
plt.colorbar()
|
| 204 |
+
plt.axis('off')
|
| 205 |
+
st.pyplot(plt)
|
| 206 |
+
|
| 207 |
+
# Download button for prediction
|
| 208 |
+
st.write(f"Download the prediction as a .npy file for {selected_model_info['name']}:")
|
| 209 |
+
npy_data = prediction.squeeze()
|
| 210 |
+
st.download_button(
|
| 211 |
+
label=f"Download Prediction - {selected_model_info['name']}",
|
| 212 |
+
data=npy_data.tobytes(),
|
| 213 |
+
file_name=f"{uploaded_file.name.split('.')[0]}_{selected_model_key}_prediction.npy",
|
| 214 |
+
mime="application/octet-stream"
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
except Exception as e:
|
| 218 |
+
st.error(f"Error with model {selected_model_info['name']}: {str(e)}")
|
| 219 |
+
else:
|
| 220 |
+
# Process the image with each model
|
| 221 |
+
for model_key, model_info in MODEL_DESCRIPTIONS.items():
|
| 222 |
+
st.write(f"Using model: {model_info['name']}")
|
| 223 |
+
config['model_config']['model_type'] = model_info['type']
|
| 224 |
+
|
| 225 |
+
# Get the model class from AVAILABLE_MODELS
|
| 226 |
+
model_class_name = AVAILABLE_MODELS[model_key]['name'].replace('-', '') + 'Model'
|
| 227 |
+
model_class = locals()[model_class_name]
|
| 228 |
+
|
| 229 |
+
# Initialize model downloader
|
| 230 |
+
from model_downloader import ModelDownloader
|
| 231 |
+
downloader = ModelDownloader()
|
| 232 |
+
|
| 233 |
+
try:
|
| 234 |
+
# Download/get model path
|
| 235 |
+
model_path = downloader.download_model(model_key)
|
| 236 |
+
st.info(f"Using model from: {model_path}")
|
| 237 |
+
|
| 238 |
+
# Load the model
|
| 239 |
+
model = model_class(config)
|
| 240 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=False)
|
| 241 |
+
model.eval()
|
| 242 |
+
|
| 243 |
+
# Make prediction
|
| 244 |
+
with torch.no_grad():
|
| 245 |
+
prediction = model(torch.from_numpy(image).unsqueeze(0).float())
|
| 246 |
+
prediction = torch.sigmoid(prediction).numpy()
|
| 247 |
+
|
| 248 |
+
st.header(f"Prediction Results - {model_info['name']}")
|
| 249 |
+
|
| 250 |
+
# Create columns for input image, prediction, and overlay
|
| 251 |
+
col1, col2, col3 = st.columns(3)
|
| 252 |
+
|
| 253 |
+
# Display input image
|
| 254 |
+
with col1:
|
| 255 |
+
st.write("Input Image")
|
| 256 |
+
plt.figure(figsize=(8, 8))
|
| 257 |
+
plt.imshow(selected_channels[0], cmap='viridis')
|
| 258 |
+
plt.colorbar()
|
| 259 |
+
plt.axis('off')
|
| 260 |
+
st.pyplot(plt)
|
| 261 |
+
|
| 262 |
+
# Display prediction
|
| 263 |
+
with col2:
|
| 264 |
+
st.write("Prediction")
|
| 265 |
+
plt.figure(figsize=(8, 8))
|
| 266 |
+
plt.imshow(prediction.squeeze(), cmap='viridis')
|
| 267 |
+
plt.colorbar()
|
| 268 |
+
plt.axis('off')
|
| 269 |
+
st.pyplot(plt)
|
| 270 |
+
|
| 271 |
+
# Display overlay
|
| 272 |
+
with col3:
|
| 273 |
+
st.write("Overlay")
|
| 274 |
+
plt.figure(figsize=(8, 8))
|
| 275 |
+
plt.imshow(selected_channels[0], cmap='viridis')
|
| 276 |
+
plt.imshow(prediction.squeeze(), cmap='viridis', alpha=0.5)
|
| 277 |
+
plt.colorbar()
|
| 278 |
+
plt.axis('off')
|
| 279 |
+
st.pyplot(plt)
|
| 280 |
+
|
| 281 |
+
# Download button for prediction
|
| 282 |
+
st.write(f"Download the prediction as a .npy file for {model_info['name']}:")
|
| 283 |
+
npy_data = prediction.squeeze()
|
| 284 |
+
st.download_button(
|
| 285 |
+
label=f"Download Prediction - {model_info['name']}",
|
| 286 |
+
data=npy_data.tobytes(),
|
| 287 |
+
file_name=f"{uploaded_file.name.split('.')[0]}_{model_key}_prediction.npy",
|
| 288 |
+
mime="application/octet-stream"
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
except Exception as e:
|
| 292 |
+
st.error(f"Error with model {model_info['name']}: {str(e)}")
|
| 293 |
+
continue
|
| 294 |
+
|
| 295 |
+
except Exception as e:
|
| 296 |
+
st.error(f"Error processing file {uploaded_file.name}: {str(e)}")
|
| 297 |
+
continue
|
| 298 |
+
import h5py
|
| 299 |
+
import torch
|
| 300 |
+
import numpy as np
|
| 301 |
+
import matplotlib.pyplot as plt
|
| 302 |
+
import yaml
|
| 303 |
+
import os
|
| 304 |
+
|
| 305 |
# Import models
|
| 306 |
from src.mobilenetv2_model import LandslideModel as MobileNetV2Model
|
| 307 |
from src.vgg16_model import LandslideModel as VGG16Model
|
|
|
|
| 317 |
from segformer_model import LandslideModel as SegFormerB2Model
|
| 318 |
from inceptionresnetv2_model import LandslideModel as InceptionResNetV2Model
|
| 319 |
|
| 320 |
+
# Define available models
|
| 321 |
+
AVAILABLE_MODELS = {
|
| 322 |
+
"mobilenetv2": {"name": "MobileNetV2", "type": "mobilenet_v2"},
|
| 323 |
+
"vgg16": {"name": "VGG16", "type": "vgg16"},
|
| 324 |
+
"resnet34": {"name": "ResNet34", "type": "resnet34"},
|
| 325 |
+
"efficientnetb0": {"name": "EfficientNetB0", "type": "efficientnet_b0"},
|
| 326 |
+
"mitb1": {"name": "MiTB1", "type": "mitb1"},
|
| 327 |
+
"inceptionv4": {"name": "InceptionV4", "type": "inception_v4"},
|
| 328 |
+
"densenet121": {"name": "DenseNet121", "type": "densenet121"},
|
| 329 |
+
"deeplabv3plus": {"name": "DeepLabV3Plus", "type": "deeplabv3plus"},
|
| 330 |
+
"resnext50": {"name": "ResNeXt50", "type": "resnext50_32x4d"},
|
| 331 |
+
"seresnet50": {"name": "SEResNet50", "type": "se_resnet50"},
|
| 332 |
+
"seresnext50": {"name": "SEResNeXt50", "type": "se_resnext50_32x4d"},
|
| 333 |
+
"segformerb2": {"name": "SegFormerB2", "type": "segformer_b2"},
|
| 334 |
+
"inceptionresnetv2": {"name": "InceptionResNetV2", "type": "inception_resnet_v2"}
|
| 335 |
+
}
|
| 336 |
+
|
| 337 |
# Load the configuration file
|
| 338 |
config = """
|
| 339 |
model_config:
|
|
|
|
| 368 |
|
| 369 |
config = yaml.safe_load(config)
|
| 370 |
|
| 371 |
+
# Model descriptions with their respective types and descriptions
|
| 372 |
+
MODEL_DESCRIPTIONS = {
|
| 373 |
+
model_key: {
|
| 374 |
+
"type": model_info["type"],
|
| 375 |
+
"description": f"{model_info['name']} - A model for landslide detection and segmentation.",
|
| 376 |
+
"name": model_info["name"]
|
| 377 |
+
}
|
| 378 |
+
for model_key, model_info in AVAILABLE_MODELS.items()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
}
|
| 380 |
|
| 381 |
# Streamlit app
|
|
|
|
| 394 |
st.sidebar.title("Model Selection")
|
| 395 |
model_option = st.sidebar.radio("Choose an option", ["Select a single model", "Run all models"])
|
| 396 |
if model_option == "Select a single model":
|
| 397 |
+
selected_model = st.sidebar.selectbox("Select Model", list(MODEL_DESCRIPTIONS.keys()))
|
| 398 |
+
config['model_config']['model_type'] = MODEL_DESCRIPTIONS[selected_model]['type']
|
| 399 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
# Display model details in the sidebar
|
| 401 |
+
st.sidebar.markdown(f"**Model Name:** {MODEL_DESCRIPTIONS[selected_model]['name']}")
|
| 402 |
+
st.sidebar.markdown(f"**Model Type:** {MODEL_DESCRIPTIONS[selected_model]['type']}")
|
| 403 |
+
st.sidebar.markdown(f"**Description:** {MODEL_DESCRIPTIONS[selected_model]['description']}")
|
| 404 |
|
| 405 |
# Main content
|
| 406 |
st.header("Upload Data")
|
|
|
|
| 494 |
|
| 495 |
else:
|
| 496 |
# Process the image with each model
|
| 497 |
+
for model_key, model_info in MODEL_DESCRIPTIONS.items():
|
| 498 |
+
st.write(f"Using model: {model_info['name']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
config['model_config']['model_type'] = model_info['type']
|
| 500 |
+
|
| 501 |
+
# Get the model class from AVAILABLE_MODELS
|
| 502 |
+
model_class_name = AVAILABLE_MODELS[model_key]['name'].replace('-', '') + 'Model'
|
| 503 |
+
model_class = locals()[model_class_name]
|
| 504 |
|
| 505 |
+
# Initialize model downloader
|
| 506 |
+
from model_downloader import ModelDownloader
|
| 507 |
+
downloader = ModelDownloader()
|
| 508 |
+
|
| 509 |
+
try:
|
| 510 |
+
# Download/get model path
|
| 511 |
+
model_path = downloader.download_model(model_name.lower())
|
| 512 |
+
st.info(f"Using model from: {model_path}")
|
| 513 |
+
|
| 514 |
+
# Load the model
|
| 515 |
+
model = model_class(config)
|
| 516 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=False)
|
| 517 |
+
model.eval()
|
| 518 |
+
except Exception as e:
|
| 519 |
+
st.error(f"Error loading model {model_name}: {str(e)}")
|
| 520 |
+
continue
|
| 521 |
|
| 522 |
# Make prediction
|
| 523 |
with torch.no_grad():
|