Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from ultralytics import YOLO
|
| 6 |
+
from sort import Sort
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
+
# Load YOLOv12x model
|
| 10 |
+
MODEL_PATH = "yolov12x.pt"
|
| 11 |
+
model = YOLO(MODEL_PATH)
|
| 12 |
+
|
| 13 |
+
# COCO dataset class ID for truck
|
| 14 |
+
TRUCK_CLASS_ID = 7 # "truck"
|
| 15 |
+
|
| 16 |
+
# Initialize SORT tracker
|
| 17 |
+
tracker = Sort()
|
| 18 |
+
|
| 19 |
+
# Minimum confidence threshold for detection
|
| 20 |
+
CONFIDENCE_THRESHOLD = 0.4 # Lowered for better detection
|
| 21 |
+
|
| 22 |
+
# Distance threshold to avoid duplicate counts
|
| 23 |
+
DISTANCE_THRESHOLD = 50
|
| 24 |
+
|
| 25 |
+
# Dictionary to define keyword-based time intervals
|
| 26 |
+
TIME_INTERVALS = {
|
| 27 |
+
"one": 1, "two": 2, "three": 3, "four": 4, "five": 5,
|
| 28 |
+
"six": 6, "seven": 7, "eight": 8, "nine": 9, "ten": 10, "eleven": 11
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
def determine_time_interval(video_filename):
|
| 32 |
+
""" Determines frame skip interval based on keywords in the filename. """
|
| 33 |
+
print(f"Checking filename: {video_filename}") # Debugging
|
| 34 |
+
for keyword, interval in TIME_INTERVALS.items():
|
| 35 |
+
if keyword in video_filename:
|
| 36 |
+
print(f"Matched keyword: {keyword} -> Interval: {interval}") # Debugging
|
| 37 |
+
return interval
|
| 38 |
+
print("No keyword match, using default interval: 5") # Debugging
|
| 39 |
+
return 5 # Default interval
|
| 40 |
+
|
| 41 |
+
def count_unique_trucks(video_path):
|
| 42 |
+
""" Counts unique trucks in a video using YOLOv12x and SORT tracking. """
|
| 43 |
+
cap = cv2.VideoCapture(video_path)
|
| 44 |
+
if not cap.isOpened():
|
| 45 |
+
return {"Error": "Unable to open video file."}
|
| 46 |
+
|
| 47 |
+
# Reset variables at the start of each analysis
|
| 48 |
+
unique_truck_ids = set()
|
| 49 |
+
truck_history = {}
|
| 50 |
+
|
| 51 |
+
# Get FPS of the video
|
| 52 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 53 |
+
|
| 54 |
+
# Extract filename from the path and convert to lowercase
|
| 55 |
+
video_filename = os.path.basename(video_path).lower()
|
| 56 |
+
|
| 57 |
+
# Determine the dynamic time interval based on filename keywords
|
| 58 |
+
time_interval = determine_time_interval(video_filename)
|
| 59 |
+
|
| 60 |
+
# Get total frames in the video
|
| 61 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 62 |
+
|
| 63 |
+
# Ensure frame_skip does not exceed total frames
|
| 64 |
+
frame_skip = min(fps * time_interval, total_frames // 2) # Reduced skipping
|
| 65 |
+
|
| 66 |
+
frame_count = 0
|
| 67 |
+
|
| 68 |
+
# Reinitialize the tracker to clear any previous state
|
| 69 |
+
tracker = Sort()
|
| 70 |
+
|
| 71 |
+
while True:
|
| 72 |
+
ret, frame = cap.read()
|
| 73 |
+
if not ret:
|
| 74 |
+
break # End of video
|
| 75 |
+
|
| 76 |
+
frame_count += 1
|
| 77 |
+
if frame_count % frame_skip != 0:
|
| 78 |
+
continue # Skip frames based on interval
|
| 79 |
+
|
| 80 |
+
# Run YOLOv12x inference
|
| 81 |
+
results = model(frame, verbose=False)
|
| 82 |
+
|
| 83 |
+
detections = []
|
| 84 |
+
for result in results:
|
| 85 |
+
for box in result.boxes:
|
| 86 |
+
class_id = int(box.cls.item()) # Get class ID
|
| 87 |
+
confidence = float(box.conf.item()) # Get confidence score
|
| 88 |
+
|
| 89 |
+
# Track only trucks
|
| 90 |
+
if class_id == TRUCK_CLASS_ID and confidence > CONFIDENCE_THRESHOLD:
|
| 91 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Get bounding box
|
| 92 |
+
detections.append([x1, y1, x2, y2, confidence])
|
| 93 |
+
|
| 94 |
+
# Debugging: Check detections
|
| 95 |
+
print(f"Frame {frame_count}: Detections -> {detections}")
|
| 96 |
+
|
| 97 |
+
if len(detections) > 0:
|
| 98 |
+
detections = np.array(detections)
|
| 99 |
+
tracked_objects = tracker.update(detections)
|
| 100 |
+
else:
|
| 101 |
+
tracked_objects = [] # Prevent tracker from resetting
|
| 102 |
+
|
| 103 |
+
# Debugging: Check tracked objects
|
| 104 |
+
print(f"Frame {frame_count}: Tracked Objects -> {tracked_objects}")
|
| 105 |
+
|
| 106 |
+
for obj in tracked_objects:
|
| 107 |
+
truck_id = int(obj[4]) # Unique ID assigned by SORT
|
| 108 |
+
x1, y1, x2, y2 = obj[:4] # Get the bounding box coordinates
|
| 109 |
+
|
| 110 |
+
truck_center = (x1 + x2) / 2, (y1 + y2) / 2 # Calculate truck center
|
| 111 |
+
|
| 112 |
+
# If truck is already in history, check movement distance
|
| 113 |
+
if truck_id in truck_history:
|
| 114 |
+
last_position = truck_history[truck_id]["position"]
|
| 115 |
+
distance = np.linalg.norm(np.array(truck_center) - np.array(last_position))
|
| 116 |
+
|
| 117 |
+
if distance > DISTANCE_THRESHOLD:
|
| 118 |
+
unique_truck_ids.add(truck_id) # Add only if moved significantly
|
| 119 |
+
|
| 120 |
+
else:
|
| 121 |
+
# If truck is not in history, add it
|
| 122 |
+
truck_history[truck_id] = {
|
| 123 |
+
"frame_count": frame_count,
|
| 124 |
+
"position": truck_center
|
| 125 |
+
}
|
| 126 |
+
unique_truck_ids.add(truck_id)
|
| 127 |
+
|
| 128 |
+
cap.release()
|
| 129 |
+
return {"Total Unique Trucks": len(unique_truck_ids)}
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
# Gradio UI function
|
| 133 |
+
def analyze_video(video_file):
|
| 134 |
+
result = count_unique_trucks(video_file)
|
| 135 |
+
return "\n".join([f"{key}: {value}" for key, value in result.items()])
|
| 136 |
+
|
| 137 |
+
# Define Gradio interface
|
| 138 |
+
iface = gr.Interface(
|
| 139 |
+
fn=analyze_video,
|
| 140 |
+
inputs=gr.Video(label="Upload Video"),
|
| 141 |
+
outputs=gr.Textbox(label="Analysis Result"),
|
| 142 |
+
title="YOLOv12x Unique Truck Counter",
|
| 143 |
+
description="Upload a video to count unique trucks using YOLOv12x and SORT tracking."
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
# Launch the Gradio app
|
| 147 |
+
if __name__ == "__main__":
|
| 148 |
+
iface.launch()
|