Spaces:
Running
Running
File size: 1,952 Bytes
cee7c80 0edffb2 cee7c80 0edffb2 cee7c80 6f40066 cee7c80 0edffb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
title: Hackers Leaderboard
emoji: π
colorFrom: purple
colorTo: pink
sdk: gradio
sdk_version: 5.50.0
app_file: app.py
pinned: false
---
# Hackers Leaderboard
Tracks engagement from the [hf-skills](https://huggingface.co/hf-skills) organization for the hackathon leaderboard.
## How Points Work
Simple and fair - **1 point per activity**:
| Activity | Points |
|----------|--------|
| π¬ Open a discussion | 1 |
| π Post a comment | 1 |
| π Open a PR | 1 |
| π¦ Own/create a repo | 1 |
## Scripts
### Collect Points
```bash
# Collect org activity only
HF_TOKEN=$HF_TOKEN python collect_points.py
# Also scan trending repos for member PRs/discussions
HF_TOKEN=$HF_TOKEN python collect_points.py --scan-external
# Scan only specific repo types
HF_TOKEN=$HF_TOKEN python collect_points.py --scan-external --repo-type models
HF_TOKEN=$HF_TOKEN python collect_points.py --scan-external --repo-type models datasets
# Push to HF dataset
HF_TOKEN=$HF_TOKEN python collect_points.py --scan-external --push-to-hub
# Custom output
python collect_points.py --output my_leaderboard.json --repo-id my-org/my-dataset
```
### Options
| Flag | Description |
|------|-------------|
| `--scan-external` | Scan trending repos across Hub for member activity |
| `--repo-type` | Filter external scan to: `models`, `datasets`, `spaces` |
| `--push-to-hub` | Push results to HF dataset |
| `--repo-id` | Target dataset repo (default: `hf-skills/hackers-leaderboard`) |
| `--output` | Local JSON output path |
### Run the App
```bash
HF_TOKEN=$HF_TOKEN python app.py
```
## API
The collector scans:
- All models, datasets, and spaces in the org
- All discussions and PRs on those repos
- All comments on discussions
Results are saved as JSONL for easy dataset consumption.
## Output Format
```json
{
"username": "user123",
"total_points": 15,
"discussions_opened": 3,
"comments_made": 8,
"prs_opened": 2,
"repos_owned": 2
}
```
|