""" DEIMv2: Real-Time Object Detection Meets DINOv3 Copyright (c) 2025 The DEIMv2 Authors. All Rights Reserved. --------------------------------------------------------------------------------- Modified from D-FINE (https://github.com/Peterande/D-FINE) Copyright (c) 2024 The D-FINE Authors. All Rights Reserved. """ import cv2 import numpy as np import onnxruntime as ort import torch import torchvision.transforms as T from PIL import Image, ImageDraw def resize_with_aspect_ratio(image, size, interpolation=Image.BILINEAR): """Resizes an image while maintaining aspect ratio and pads it.""" original_width, original_height = image.size ratio = min(size / original_width, size / original_height) new_width = int(original_width * ratio) new_height = int(original_height * ratio) image = image.resize((new_width, new_height), interpolation) # Create a new image with the desired size and paste the resized image onto it new_image = Image.new("RGB", (size, size)) new_image.paste(image, ((size - new_width) // 2, (size - new_height) // 2)) return new_image, ratio, (size - new_width) // 2, (size - new_height) // 2 def draw(images, labels, boxes, scores, ratios, paddings, thrh=0.4): result_images = [] for i, im in enumerate(images): draw = ImageDraw.Draw(im) scr = scores[i] lab = labels[i][scr > thrh] box = boxes[i][scr > thrh] scr = scr[scr > thrh] ratio = ratios[i] pad_w, pad_h = paddings[i] for lbl, bb in zip(lab, box): # Adjust bounding boxes according to the resizing and padding bb = [ (bb[0] - pad_w) / ratio, (bb[1] - pad_h) / ratio, (bb[2] - pad_w) / ratio, (bb[3] - pad_h) / ratio, ] draw.rectangle(bb, outline='red') draw.text((bb[0], bb[1]), text=str(lbl), fill='blue') result_images.append(im) return result_images def process_image(sess, im_pil, size=640, model_size='s'): # Resize image while preserving aspect ratio resized_im_pil, ratio, pad_w, pad_h = resize_with_aspect_ratio(im_pil, size) orig_size = torch.tensor([[resized_im_pil.size[1], resized_im_pil.size[0]]]) transforms = T.Compose([ T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if model_size not in ['atto', 'femto', 'pico', 'n'] else T.Lambda(lambda x: x) ]) im_data = transforms(resized_im_pil).unsqueeze(0) output = sess.run( output_names=None, input_feed={'images': im_data.numpy(), "orig_target_sizes": orig_size.numpy()} ) labels, boxes, scores = output result_images = draw( [im_pil], labels, boxes, scores, [ratio], [(pad_w, pad_h)] ) result_images[0].save('onnx_result.jpg') print("Image processing complete. Result saved as 'result.jpg'.") def process_video(sess, video_path, size=640, model_size='s'): cap = cv2.VideoCapture(video_path) # Get video properties fps = cap.get(cv2.CAP_PROP_FPS) orig_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) orig_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # Define the codec and create VideoWriter object fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter('onnx_result.mp4', fourcc, fps, (orig_w, orig_h)) frame_count = 0 print("Processing video frames...") while cap.isOpened(): ret, frame = cap.read() if not ret: break # Convert frame to PIL image frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) # Resize frame while preserving aspect ratio resized_frame_pil, ratio, pad_w, pad_h = resize_with_aspect_ratio(frame_pil, size) orig_size = torch.tensor([[resized_frame_pil.size[1], resized_frame_pil.size[0]]]) transforms = T.Compose([ T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if model_size not in ['atto', 'femto', 'pico', 'n'] else T.Lambda(lambda x: x) ]) im_data = transforms(resized_frame_pil).unsqueeze(0) output = sess.run( output_names=None, input_feed={'images': im_data.numpy(), "orig_target_sizes": orig_size.numpy()} ) labels, boxes, scores = output # Draw detections on the original frame result_images = draw( [frame_pil], labels, boxes, scores, [ratio], [(pad_w, pad_h)] ) frame_with_detections = result_images[0] # Convert back to OpenCV image frame = cv2.cvtColor(np.array(frame_with_detections), cv2.COLOR_RGB2BGR) # Write the frame out.write(frame) frame_count += 1 if frame_count % 10 == 0: print(f"Processed {frame_count} frames...") cap.release() out.release() print("Video processing complete. Result saved as 'result.mp4'.") def main(args): """Main function.""" # Load the ONNX model sess = ort.InferenceSession(args.onnx) size = sess.get_inputs()[0].shape[2] print(f"Using device: {ort.get_device()}") input_path = args.input try: # Try to open the input as an image im_pil = Image.open(input_path).convert('RGB') process_image(sess, im_pil, size, args.model_size) except IOError: # Not an image, process as video process_video(sess, input_path, size, args.model_size) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--onnx', type=str, required=True, help='Path to the ONNX model file.') parser.add_argument('--input', type=str, required=True, help='Path to the input image or video file.') parser.add_argument('-ms', '--model-size', type=str, required=True, choices=['atto', 'femto', 'pico', 'n', 's', 'm', 'l', 'x'], help='Model size') args = parser.parse_args() main(args)