Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import fitz # PyMuPDF
|
| 2 |
+
from transformers import DPRQuestionEncoderTokenizer, DPRQuestionEncoder
|
| 3 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 4 |
+
import json
|
| 5 |
+
import faiss
|
| 6 |
+
import numpy as np
|
| 7 |
+
import streamlit as st
|
| 8 |
+
|
| 9 |
+
# Function to extract text from PDF
|
| 10 |
+
def extract_text_from_pdf(pdf_path):
|
| 11 |
+
document = fitz.open(pdf_path)
|
| 12 |
+
text = ""
|
| 13 |
+
for page_num in range(document.page_count):
|
| 14 |
+
page = document.load_page(page_num)
|
| 15 |
+
text += page.get_text("text")
|
| 16 |
+
return text
|
| 17 |
+
|
| 18 |
+
# Function to chunk text into smaller segments
|
| 19 |
+
def chunk_text(text, chunk_size=1000):
|
| 20 |
+
return [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
|
| 21 |
+
|
| 22 |
+
# Initialize models
|
| 23 |
+
retriever_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained('facebook/dpr-question_encoder-single-nq-base')
|
| 24 |
+
retriever = DPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base')
|
| 25 |
+
generator_tokenizer = T5Tokenizer.from_pretrained('t5-base')
|
| 26 |
+
generator = T5ForConditionalGeneration.from_pretrained('t5-base')
|
| 27 |
+
|
| 28 |
+
# Index chunks using FAISS
|
| 29 |
+
def index_chunks(chunks):
|
| 30 |
+
index = faiss.IndexFlatL2(768) # Assuming 768-dimensional embeddings
|
| 31 |
+
chunk_embeddings = []
|
| 32 |
+
for chunk in chunks:
|
| 33 |
+
inputs = retriever_tokenizer(chunk, return_tensors='pt', padding=True, truncation=True)
|
| 34 |
+
chunk_embedding = retriever(**inputs).pooler_output.detach().numpy()
|
| 35 |
+
chunk_embeddings.append(chunk_embedding)
|
| 36 |
+
chunk_embeddings = np.vstack(chunk_embeddings)
|
| 37 |
+
index.add(chunk_embeddings)
|
| 38 |
+
return index, chunk_embeddings
|
| 39 |
+
|
| 40 |
+
# Function to get answer to a query
|
| 41 |
+
def get_answer(query, chunks, index, chunk_embeddings, max_length=50):
|
| 42 |
+
# Encode query using retriever
|
| 43 |
+
inputs = retriever_tokenizer(query, return_tensors='pt')
|
| 44 |
+
question_embedding = retriever(**inputs).pooler_output.detach().numpy()
|
| 45 |
+
|
| 46 |
+
# Search for the most relevant chunk
|
| 47 |
+
distances, indices = index.search(question_embedding, 1)
|
| 48 |
+
retrieved_chunk = chunks[indices[0][0]]
|
| 49 |
+
|
| 50 |
+
# Generate answer using generator
|
| 51 |
+
input_ids = generator_tokenizer(retrieved_chunk, return_tensors='pt').input_ids
|
| 52 |
+
output_ids = generator.generate(input_ids, max_length=max_length)
|
| 53 |
+
answer = generator_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 54 |
+
|
| 55 |
+
return answer
|
| 56 |
+
|
| 57 |
+
# Load and process PDF
|
| 58 |
+
pdf_text = extract_text_from_pdf('policy-booklet-0923.pdf')
|
| 59 |
+
chunks = chunk_text(pdf_text)
|
| 60 |
+
index, chunk_embeddings = index_chunks(chunks)
|
| 61 |
+
|
| 62 |
+
# Streamlit front-end
|
| 63 |
+
st.title("RAG-Powered PDF Chatbot")
|
| 64 |
+
|
| 65 |
+
user_query = st.text_input("Enter your question:")
|
| 66 |
+
if user_query:
|
| 67 |
+
answer = get_answer(user_query, chunks, index, chunk_embeddings, max_length=100)
|
| 68 |
+
st.write("Answer:", answer)
|