Spaces:
Sleeping
Sleeping
Update app.py
Browse filesModified for Docker + JupyterLab on HuggingFace Spaces
app.py
CHANGED
|
@@ -22,7 +22,7 @@ server = app.server
|
|
| 22 |
|
| 23 |
# Reference absolute file path
|
| 24 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 25 |
-
CATEGORIES_FILE = os.path.join(BASE_DIR, 'google_categories
|
| 26 |
|
| 27 |
# Configuration for GLiNER integration
|
| 28 |
custom_spacy_config = {
|
|
@@ -222,17 +222,17 @@ def batch_process_keywords(keywords, batch_size=8):
|
|
| 222 |
app.layout = dbc.Container([
|
| 223 |
dcc.Store(id='models-loaded', data=False),
|
| 224 |
dbc.NavbarSimple(
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
dbc.Row(dbc.Col(html.H1('Keyword Intent, Named Entity Recognition (NER), & Google Topic Modeling Dashboard', className='text-center text-light mb-4 mt-4'))),
|
| 237 |
|
| 238 |
dbc.Row([
|
|
@@ -355,9 +355,27 @@ app.layout = dbc.Container([
|
|
| 355 |
], width=12)
|
| 356 |
], className="mt-4 mb-4"),
|
| 357 |
|
| 358 |
-
|
| 359 |
-
html.Div(
|
| 360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
|
| 362 |
], fluid=True)
|
| 363 |
|
|
@@ -506,6 +524,6 @@ def download_csv(n_clicks, processed_data):
|
|
| 506 |
csv_string = df.to_csv(index=False, encoding='utf-8')
|
| 507 |
return dict(content=csv_string, filename="KeyIntentNER-T_keyword_analysis.csv")
|
| 508 |
|
|
|
|
| 509 |
if __name__ == "__main__":
|
| 510 |
-
|
| 511 |
-
app.run_server(debug=False, host='0.0.0.0', port=port)
|
|
|
|
| 22 |
|
| 23 |
# Reference absolute file path
|
| 24 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 25 |
+
CATEGORIES_FILE = os.path.join(BASE_DIR, 'google_categories.txt')
|
| 26 |
|
| 27 |
# Configuration for GLiNER integration
|
| 28 |
custom_spacy_config = {
|
|
|
|
| 222 |
app.layout = dbc.Container([
|
| 223 |
dcc.Store(id='models-loaded', data=False),
|
| 224 |
dbc.NavbarSimple(
|
| 225 |
+
children=[
|
| 226 |
+
dbc.NavItem(dbc.NavLink("About", href="#about", external_link=True)),
|
| 227 |
+
dbc.NavItem(dbc.NavLink("Contact", href="#contact", external_link=True)),
|
| 228 |
+
],
|
| 229 |
+
brand="KeyIntentNER-T",
|
| 230 |
+
brand_href="https://github.com/jeredhiggins/KeyIntentNER-T",
|
| 231 |
+
color="#151515",
|
| 232 |
+
dark=True,
|
| 233 |
+
brand_style={"background": "linear-gradient(to right, #ff7e5f, #feb47b)", "-webkit-background-clip": "text", "color": "transparent", "textShadow": "0 0 1px #ffffff, 0 0 3px #ff7e5f, 0 0 5px #ff7e5f"},
|
| 234 |
+
),
|
| 235 |
+
|
| 236 |
dbc.Row(dbc.Col(html.H1('Keyword Intent, Named Entity Recognition (NER), & Google Topic Modeling Dashboard', className='text-center text-light mb-4 mt-4'))),
|
| 237 |
|
| 238 |
dbc.Row([
|
|
|
|
| 355 |
], width=12)
|
| 356 |
], className="mt-4 mb-4"),
|
| 357 |
|
| 358 |
+
# JS for smooth scrolling
|
| 359 |
+
html.Div([
|
| 360 |
+
html.Script('''
|
| 361 |
+
document.addEventListener("DOMContentLoaded", function() {
|
| 362 |
+
var links = document.querySelectorAll("a[href^='#']");
|
| 363 |
+
links.forEach(function(link) {
|
| 364 |
+
link.addEventListener("click", function(e) {
|
| 365 |
+
e.preventDefault();
|
| 366 |
+
var targetId = this.getAttribute("href").substring(1);
|
| 367 |
+
var targetElement = document.getElementById(targetId);
|
| 368 |
+
if (targetElement) {
|
| 369 |
+
targetElement.scrollIntoView({
|
| 370 |
+
behavior: "smooth",
|
| 371 |
+
block: "start"
|
| 372 |
+
});
|
| 373 |
+
}
|
| 374 |
+
});
|
| 375 |
+
});
|
| 376 |
+
});
|
| 377 |
+
''')
|
| 378 |
+
]),
|
| 379 |
|
| 380 |
], fluid=True)
|
| 381 |
|
|
|
|
| 524 |
csv_string = df.to_csv(index=False, encoding='utf-8')
|
| 525 |
return dict(content=csv_string, filename="KeyIntentNER-T_keyword_analysis.csv")
|
| 526 |
|
| 527 |
+
# Modified the server run command for HuggingFace Spaces
|
| 528 |
if __name__ == "__main__":
|
| 529 |
+
app.run_server(debug=False, host="0.0.0.0", port=7860)
|
|
|