Spaces:
Sleeping
Sleeping
File size: 12,784 Bytes
30ea74d 0f553b4 30ea74d 44d5dcc 30ea74d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
#!/usr/bin/env python3
"""
Voice Development Assistant - Hugging Face Spaces
Optimized for ZeroGPU H200 cluster
Uses OpenRouter for LLM, HuggingFace for TTS
"""
import gradio as gr
import numpy as np
import os
import tempfile
import requests
print(f"π¦ Gradio version: {gr.__version__}")
# Check for ZeroGPU availability
try:
import spaces
ZERO_GPU_AVAILABLE = True
print("π ZeroGPU detected - GPU acceleration enabled!")
except ImportError:
ZERO_GPU_AVAILABLE = False
print("β οΈ ZeroGPU not available - running on CPU")
# Configuration from environment
CONFIG = {
'openrouter_key': os.getenv('OPENROUTER_API_KEY', ''),
'whisper_model': os.getenv('WHISPER_MODEL', 'base'),
'language': os.getenv('LANGUAGE', 'en'),
'llm_model': os.getenv('LLM_MODEL', 'cognitivecomputations/dolphin-mistral-24b-venice-edition:free'),
'max_tokens': int(os.getenv('MAX_TOKENS', '4096')),
'temperature': float(os.getenv('TEMPERATURE', '1.0'))
}
OPENROUTER_BASE_URL = "https://openrouter.ai/api/v1"
# Lazy-loaded models
whisper_model = None
tts_pipeline = None
conversation_history = []
def get_whisper_model():
"""Load Whisper model (uses GPU when available via ZeroGPU)"""
global whisper_model
if whisper_model is None:
import whisper
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = CONFIG['whisper_model']
print(f"Loading Whisper model '{model_name}' on {device}...")
whisper_model = whisper.load_model(model_name, device=device)
print(f"β
Whisper model loaded on {device}")
return whisper_model
def get_tts_pipeline():
"""Get HuggingFace TTS pipeline"""
global tts_pipeline
if tts_pipeline is None:
try:
import torch
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from datasets import load_dataset
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Loading TTS models on {device}...")
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(device)
tts_pipeline = {
"processor": processor,
"model": model,
"vocoder": vocoder,
"speaker_embeddings": speaker_embeddings,
"device": device
}
print("β
HuggingFace TTS initialized (SpeechT5)")
except Exception as e:
print(f"β οΈ SpeechT5 failed, trying MMS-TTS: {e}")
try:
from transformers import pipeline
tts_pipeline = pipeline("text-to-speech", model="facebook/mms-tts-eng")
print("β
HuggingFace TTS initialized (MMS-TTS)")
except Exception as e2:
print(f"β TTS initialization failed: {e2}")
tts_pipeline = None
return tts_pipeline
def chat_with_openrouter(messages: list) -> str:
"""Send chat request to OpenRouter API"""
api_key = CONFIG['openrouter_key']
if not api_key:
raise ValueError("OpenRouter API key not configured. Set OPENROUTER_API_KEY secret.")
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
"HTTP-Referer": "https://huggingface.co/spaces",
"X-Title": "Voice Development Assistant"
}
payload = {
"model": CONFIG['llm_model'],
"messages": messages,
"max_tokens": CONFIG['max_tokens'],
"temperature": CONFIG['temperature']
}
response = requests.post(
f"{OPENROUTER_BASE_URL}/chat/completions",
headers=headers,
json=payload,
timeout=120
)
if response.status_code != 200:
raise Exception(f"OpenRouter API error: {response.status_code} - {response.text}")
return response.json()['choices'][0]['message']['content']
def transcribe_audio_gpu(audio_data: np.ndarray) -> str:
"""Transcribe audio using Whisper"""
model = get_whisper_model()
if audio_data.dtype != np.float32:
if audio_data.dtype == np.int16:
audio_data = audio_data.astype(np.float32) / 32768.0
else:
audio_data = audio_data.astype(np.float32)
if len(audio_data.shape) > 1:
audio_data = audio_data[:, 0] if audio_data.shape[1] > 1 else audio_data.flatten()
result = model.transcribe(audio_data, language=CONFIG['language'], fp16=False)
return result["text"].strip()
# Wrap with ZeroGPU decorator if available
if ZERO_GPU_AVAILABLE:
@spaces.GPU(duration=60)
def transcribe_with_gpu(audio_data: np.ndarray) -> str:
return transcribe_audio_gpu(audio_data)
else:
transcribe_with_gpu = transcribe_audio_gpu
def transcribe_audio(audio):
"""Transcribe audio input from Gradio"""
try:
if audio is None:
return "No audio provided. Please record or upload audio."
sample_rate, audio_data = audio
text = transcribe_with_gpu(audio_data)
return text if text else "No speech detected."
except Exception as e:
return f"Error: {str(e)}"
def synthesize_text(text):
"""Synthesize text to speech"""
try:
if not text:
return None, "No text provided"
import torch
import scipy.io.wavfile as wavfile
tts = get_tts_pipeline()
if tts is None:
return None, "TTS not available"
if isinstance(tts, dict):
inputs = tts["processor"](text=text, return_tensors="pt").to(tts["device"])
with torch.no_grad():
speech = tts["model"].generate_speech(
inputs["input_ids"],
tts["speaker_embeddings"],
vocoder=tts["vocoder"]
)
audio_data = speech.cpu().numpy()
sample_rate = 16000
else:
result = tts(text)
audio_data = result["audio"][0]
sample_rate = result["sampling_rate"]
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp:
wavfile.write(tmp.name, sample_rate, audio_data)
return tmp.name, f"β
Synthesized {len(text)} characters"
except Exception as e:
return None, f"Error: {str(e)}"
def chat_with_claude(message, history):
"""Chat with LLM via OpenRouter"""
global conversation_history
try:
if not message.strip():
return history
conversation_history.append({"role": "user", "content": message})
assistant_message = chat_with_openrouter(conversation_history)
conversation_history.append({"role": "assistant", "content": assistant_message})
history.append([message, assistant_message])
return history
except Exception as e:
history.append([message, f"Error: {str(e)}"])
return history
def voice_chat(audio):
"""Complete voice conversation"""
global conversation_history
try:
if audio is None:
return None, "No audio provided", ""
sample_rate, audio_data = audio
user_text = transcribe_with_gpu(audio_data)
if not user_text:
return None, "No speech detected", ""
conversation_history.append({"role": "user", "content": user_text})
response_text = chat_with_openrouter(conversation_history)
conversation_history.append({"role": "assistant", "content": response_text})
audio_path, _ = synthesize_text(response_text)
conversation_log = f"**π€ You:** {user_text}\n\n**π€ Assistant:** {response_text}"
return audio_path, conversation_log, response_text
except Exception as e:
return None, f"Error: {str(e)}", ""
def clear_history():
"""Clear conversation history"""
global conversation_history
conversation_history = []
return []
def check_api_status():
"""Check system status"""
status = []
if CONFIG['openrouter_key']:
status.append("β
OpenRouter API key configured")
else:
status.append("β OpenRouter API key missing (Set OPENROUTER_API_KEY secret)")
status.append("β
HuggingFace TTS (free, no API key)")
if ZERO_GPU_AVAILABLE:
status.append("π ZeroGPU enabled (H200 acceleration)")
else:
status.append("π» Running on CPU")
return "\n".join(status)
# Build Gradio Interface
demo = gr.Blocks(title="Voice Development Assistant")
with demo:
gr.Markdown("""
# π€ Voice Development Assistant
**Personal Voice Interface for Development Workflows**
Speech-to-Text β’ Text-to-Speech β’ Claude AI Conversations
""")
with gr.Accordion("π System Status", open=False):
status_display = gr.Markdown(check_api_status())
refresh_btn = gr.Button("π Refresh Status")
refresh_btn.click(check_api_status, outputs=[status_display])
with gr.Tabs():
# Voice Chat
with gr.Tab("π€ Voice Chat"):
gr.Markdown("### Speak with Claude using your voice")
with gr.Row():
with gr.Column(scale=1):
voice_input = gr.Audio(label="ποΈ Click to Record", sources=["microphone"], type="numpy")
voice_submit = gr.Button("π Send to Claude", variant="primary")
with gr.Column(scale=1):
voice_output = gr.Audio(label="π Claude's Response", type="filepath")
voice_log = gr.Markdown(label="Conversation")
voice_text = gr.Textbox(label="Response Text", lines=3, interactive=False)
voice_submit.click(voice_chat, inputs=[voice_input], outputs=[voice_output, voice_log, voice_text])
# Transcribe
with gr.Tab("π Transcribe"):
gr.Markdown("### Convert speech to text using Whisper")
with gr.Row():
with gr.Column():
stt_input = gr.Audio(label="ποΈ Audio Input", sources=["microphone", "upload"], type="numpy")
stt_btn = gr.Button("π Transcribe", variant="primary")
with gr.Column():
stt_output = gr.Textbox(label="Transcription", lines=8, placeholder="Transcribed text appears here...")
stt_btn.click(transcribe_audio, inputs=[stt_input], outputs=[stt_output])
# TTS
with gr.Tab("π Speak"):
gr.Markdown("### Convert text to natural speech (HuggingFace TTS)")
with gr.Row():
with gr.Column():
tts_input = gr.Textbox(label="Text to Speak", lines=5, placeholder="Enter text to synthesize...")
tts_btn = gr.Button("π Generate Speech", variant="primary")
with gr.Column():
tts_output = gr.Audio(label="Generated Audio", type="filepath")
tts_status = gr.Textbox(label="Status", interactive=False)
tts_btn.click(synthesize_text, inputs=[tts_input], outputs=[tts_output, tts_status])
# Text Chat
with gr.Tab("π¬ Text Chat"):
gr.Markdown("### Chat with Claude via text")
chatbot = gr.Chatbot(height=450)
with gr.Row():
chat_input = gr.Textbox(label="Message", placeholder="Type your message...", scale=4)
chat_submit = gr.Button("Send", variant="primary", scale=1)
clear_btn = gr.Button("ποΈ Clear History")
chat_submit.click(chat_with_claude, inputs=[chat_input, chatbot], outputs=[chatbot]).then(lambda: "", outputs=[chat_input])
chat_input.submit(chat_with_claude, inputs=[chat_input, chatbot], outputs=[chatbot]).then(lambda: "", outputs=[chat_input])
clear_btn.click(clear_history, outputs=[chatbot])
gr.Markdown("""
---
**Voice Development Assistant** β’ Built with Whisper, HuggingFace TTS, and OpenRouter
π Configure OPENROUTER_API_KEY as a Hugging Face Space secret
""")
if __name__ == "__main__":
demo.launch()
|