File size: 11,313 Bytes
8c0b652
 
 
 
1fa5de9
8c0b652
 
 
 
 
 
 
 
 
 
 
 
 
 
1fa5de9
8c0b652
1fa5de9
 
8c0b652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fa5de9
8c0b652
1fa5de9
8c0b652
1fa5de9
8c0b652
 
 
 
 
1fa5de9
 
 
 
 
8c0b652
 
 
 
 
 
 
 
 
 
 
 
1fa5de9
 
8c0b652
 
 
 
 
1fa5de9
8c0b652
1fa5de9
 
 
8c0b652
1fa5de9
 
 
8c0b652
 
 
 
 
 
 
 
1fa5de9
 
8c0b652
 
 
 
 
 
1fa5de9
 
 
8c0b652
1fa5de9
 
 
8c0b652
 
 
 
 
 
 
 
1fa5de9
 
8c0b652
 
 
 
 
 
1fa5de9
 
 
8c0b652
 
 
 
 
 
 
 
 
 
 
 
1fa5de9
 
8c0b652
 
 
 
 
 
1fa5de9
 
 
 
 
 
 
8c0b652
1fa5de9
 
 
8c0b652
1fa5de9
 
 
 
 
8c0b652
 
1fa5de9
 
8c0b652
 
1fa5de9
 
 
 
 
 
 
8c0b652
 
 
 
 
 
 
 
1fa5de9
 
8c0b652
 
 
 
 
 
1fa5de9
 
 
 
 
 
 
8c0b652
1fa5de9
 
 
 
 
 
 
 
 
8c0b652
 
1fa5de9
 
8c0b652
 
 
 
1fa5de9
 
8c0b652
1fa5de9
 
8c0b652
1fa5de9
8c0b652
 
 
1fa5de9
8c0b652
 
1fa5de9
 
 
 
 
 
 
 
 
8c0b652
1fa5de9
 
8c0b652
 
1fa5de9
 
 
 
8c0b652
1fa5de9
 
8c0b652
1fa5de9
 
8c0b652
1fa5de9
8c0b652
1fa5de9
8c0b652
1fa5de9
 
8c0b652
 
 
1fa5de9
 
 
 
 
8c0b652
1fa5de9
 
 
 
8c0b652
 
 
1fa5de9
 
8c0b652
 
1fa5de9
 
8c0b652
1fa5de9
 
8c0b652
1fa5de9
 
 
 
 
 
 
 
 
 
8c0b652
1fa5de9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#!/usr/bin/env python3
"""
Embedded Configuration for LinguaCustodia API
Fallback configuration when clean architecture imports fail.
Updated for LinguaCustodia Pro Finance Suite models.
"""

import os
import torch
import gc
import logging
from pydantic import BaseModel, Field, field_validator, ConfigDict
from pydantic_settings import BaseSettings
from typing import Dict, List, Optional, Any, Literal
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from huggingface_hub import login

logger = logging.getLogger(__name__)

# Model type definition for Pro Finance Suite
ModelType = Literal[
    "pro-finance-large", "pro-finance-medium", "pro-finance-small", 
    "pro-finance-mini", "llama-pro-finance-mini", "fin-pythia-1.4b"
]

class TokenizerConfig(BaseModel):
    """Tokenizer configuration for LinguaCustodia models."""
    eos_token: str = Field(..., description="End of sequence token")
    bos_token: Optional[str] = Field(None, description="Beginning of sequence token")
    pad_token: Optional[str] = Field(None, description="Padding token")
    unk_token: Optional[str] = Field(None, description="Unknown token")
    eos_token_id: int = Field(..., description="EOS token ID")
    bos_token_id: Optional[int] = Field(None, description="BOS token ID")
    pad_token_id: Optional[int] = Field(None, description="Pad token ID")
    vocab_size: int = Field(..., description="Vocabulary size")
    model_max_length: int = Field(131072, description="Maximum sequence length")

class GenerationConfig(BaseModel):
    """Generation configuration for LinguaCustodia models."""
    eos_tokens: List[int] = Field(..., description="List of EOS token IDs")
    bos_token_id: Optional[int] = Field(None, description="BOS token ID")
    temperature: float = Field(0.6, description="Sampling temperature")
    top_p: float = Field(0.9, description="Top-p sampling parameter")
    max_new_tokens: int = Field(150, description="Maximum new tokens to generate")
    repetition_penalty: float = Field(1.05, description="Repetition penalty")
    no_repeat_ngram_size: int = Field(2, description="No repeat n-gram size")
    early_stopping: bool = Field(False, description="Enable early stopping")
    min_length: int = Field(50, description="Minimum response length")

class ModelInfo(BaseModel):
    """Model information for LinguaCustodia models."""
    model_id: str = Field(..., description="HuggingFace model identifier")
    display_name: str = Field(..., description="Human-readable model name")
    architecture: str = Field(..., description="Model architecture class")
    parameters: str = Field(..., description="Model parameter count")
    memory_gb: int = Field(..., description="Required RAM in GB")
    vram_gb: int = Field(..., description="Required VRAM in GB")
    tokenizer: TokenizerConfig = Field(..., description="Tokenizer configuration")
    generation: GenerationConfig = Field(..., description="Generation configuration")

class AppSettings(BaseSettings):
    """Application settings."""
    model_name: ModelType = Field(default="pro-finance-small", description="Model to load")
    hf_token_lc: Optional[str] = Field(default=None, description="HuggingFace token for LinguaCustodia")
    hf_token: Optional[str] = Field(default=None, description="HuggingFace token")
    app_port: int = Field(default=7860, description="Application port")
    
    model_config = ConfigDict(
        env_file=".env",
        env_file_encoding="utf-8",
        case_sensitive=False,
        extra="ignore"
    )
    
    @field_validator('model_name')
    @classmethod
    def validate_model_name(cls, v):
        valid_models = [
            "pro-finance-large", "pro-finance-medium", "pro-finance-small", 
            "pro-finance-mini", "llama-pro-finance-mini", "fin-pythia-1.4b"
        ]
        if v not in valid_models:
            raise ValueError(f'Model name must be one of: {valid_models}')
        return v

# LinguaCustodia Pro Finance Suite model configurations
LINGUACUSTODIA_MODELS = {
    "pro-finance-large": ModelInfo(
        model_id="LinguaCustodia/Llama-Pro-Finance-Large",
        display_name="Llama Pro Finance Large",
        architecture="LlamaForCausalLM",
        parameters="70B",
        memory_gb=140,
        vram_gb=80,
        tokenizer=TokenizerConfig(
            eos_token="<|eot_id|>",
            bos_token="<|begin_of_text|>",
            pad_token="<|eot_id|>",
            unk_token=None,
            eos_token_id=128009,
            bos_token_id=128000,
            pad_token_id=128009,
            vocab_size=128000,
            model_max_length=131072
        ),
        generation=GenerationConfig(
            eos_tokens=[128001, 128008, 128009],
            bos_token_id=128000
        )
    ),
    "pro-finance-medium": ModelInfo(
        model_id="LinguaCustodia/LLM-Pro-Finance-Medium",
        display_name="LLM Pro Finance Medium",
        architecture="LlamaForCausalLM",
        parameters="32B",
        memory_gb=64,
        vram_gb=32,
        tokenizer=TokenizerConfig(
            eos_token="<|eot_id|>",
            bos_token="<|begin_of_text|>",
            pad_token="<|eot_id|>",
            unk_token=None,
            eos_token_id=128009,
            bos_token_id=128000,
            pad_token_id=128009,
            vocab_size=128000,
            model_max_length=131072
        ),
        generation=GenerationConfig(
            eos_tokens=[128001, 128008, 128009],
            bos_token_id=128000
        )
    ),
    "pro-finance-small": ModelInfo(
        model_id="LinguaCustodia/LLM-Pro-Finance-Small",
        display_name="LLM Pro Finance Small",
        architecture="LlamaForCausalLM",
        parameters="8B",
        memory_gb=16,
        vram_gb=8,
        tokenizer=TokenizerConfig(
            eos_token="<|eot_id|>",
            bos_token="<|begin_of_text|>",
            pad_token="<|eot_id|>",
            unk_token=None,
            eos_token_id=128009,
            bos_token_id=128000,
            pad_token_id=128009,
            vocab_size=128000,
            model_max_length=131072
        ),
        generation=GenerationConfig(
            eos_tokens=[128001, 128008, 128009],
            bos_token_id=128000
        )
    ),
    "pro-finance-mini": ModelInfo(
        model_id="LinguaCustodia/LLM-Pro-Finance-Mini",
        display_name="LLM Pro Finance Mini",
        architecture="LlamaForCausalLM",
        parameters="3B",
        memory_gb=6,
        vram_gb=3,
        tokenizer=TokenizerConfig(
            eos_token="<|eot_id|>",
            bos_token="<|begin_of_text|>",
            pad_token="<|eot_id|>",
            unk_token=None,
            eos_token_id=128009,
            bos_token_id=128000,
            pad_token_id=128009,
            vocab_size=128000,
            model_max_length=131072
        ),
        generation=GenerationConfig(
            eos_tokens=[128001, 128008, 128009],
            bos_token_id=128000
        )
    ),
    "llama-pro-finance-mini": ModelInfo(
        model_id="LinguaCustodia/Llama-Pro-Finance-Mini",
        display_name="Llama Pro Finance Mini",
        architecture="LlamaForCausalLM", 
        parameters="1B",
        memory_gb=3,
        vram_gb=2,
        tokenizer=TokenizerConfig(
            eos_token="<|eot_id|>",
            bos_token="<|begin_of_text|>",
            pad_token="<|eot_id|>",
            unk_token=None,
            eos_token_id=128009,
            bos_token_id=128000,
            pad_token_id=128009,
            vocab_size=128000,
            model_max_length=131072
        ),
        generation=GenerationConfig(
            eos_tokens=[128001, 128008, 128009],
            bos_token_id=128000
        )
    ),
    "fin-pythia-1.4b": ModelInfo(
        model_id="LinguaCustodia/fin-pythia-1.4b",
        display_name="Fin-Pythia 1.4B Financial",
        architecture="GPTNeoXForCausalLM",
        parameters="1.4B",
        memory_gb=3,
        vram_gb=2,
        tokenizer=TokenizerConfig(
            eos_token="<|endoftext|>",
            bos_token="<|endoftext|>",
            pad_token=None,
            unk_token="<|endoftext|>",
            eos_token_id=0,
            bos_token_id=0,
            pad_token_id=None,
            vocab_size=50304,
            model_max_length=2048
        ),
        generation=GenerationConfig(
            eos_tokens=[0],
            bos_token_id=0
        )
    )
}

# Default model configuration
DEFAULT_MODEL = "pro-finance-small"

def get_model_config(model_name: str) -> ModelInfo:
    """Get model configuration by name."""
    if model_name not in LINGUACUSTODIA_MODELS:
        raise ValueError(f"Model '{model_name}' not found. Available models: {list(LINGUACUSTODIA_MODELS.keys())}")
    return LINGUACUSTODIA_MODELS[model_name]

def get_app_settings() -> AppSettings:
    """Get application settings."""
    return AppSettings()

def authenticate_huggingface(token: str) -> bool:
    """Authenticate with HuggingFace."""
    try:
        login(token=token, add_to_git_credential=False)
        logger.info("βœ… Successfully authenticated with HuggingFace")
        return True
    except Exception as e:
        logger.error(f"❌ HuggingFace authentication failed: {e}")
        return False

def setup_gpu_environment():
    """Setup GPU environment."""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        gc.collect()
        logger.info(f"πŸš€ GPU available: {torch.cuda.get_device_name(0)}")
        logger.info(f"πŸ“Š GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB")
        return True
    else:
        logger.warning("⚠️ No GPU available, using CPU")
        return False

def load_model_and_tokenizer(model_info: ModelInfo, use_auth_token: Optional[str] = None):
    """Load model and tokenizer with proper configuration."""
    try:
        logger.info(f"πŸ”„ Loading model: {model_info.model_id}")
        
        # Load tokenizer
        tokenizer = AutoTokenizer.from_pretrained(
            model_info.model_id,
            token=use_auth_token,
            trust_remote_code=True
        )
        
        # Configure special tokens
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
            
        # Load model
        model = AutoModelForCausalLM.from_pretrained(
            model_info.model_id,
            token=use_auth_token,
            trust_remote_code=True,
            torch_dtype=torch.bfloat16,
            device_map="auto"
        )
        
        logger.info(f"βœ… Model loaded successfully: {model_info.display_name}")
        return model, tokenizer
        
    except Exception as e:
        logger.error(f"❌ Failed to load model {model_info.model_id}: {e}")
        raise

def create_pipeline(model, tokenizer, model_info: ModelInfo):
    """Create inference pipeline."""
    try:
        pipe = pipeline(
            "text-generation",
            model=model,
            tokenizer=tokenizer,
            torch_dtype=torch.bfloat16,
            device_map="auto",
            **model_info.generation.model_dump()
        )
        logger.info("βœ… Pipeline created successfully")
        return pipe
    except Exception as e:
        logger.error(f"❌ Failed to create pipeline: {e}")
        raise