Spaces:
Runtime error
Runtime error
File size: 11,313 Bytes
8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 8c0b652 1fa5de9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
#!/usr/bin/env python3
"""
Embedded Configuration for LinguaCustodia API
Fallback configuration when clean architecture imports fail.
Updated for LinguaCustodia Pro Finance Suite models.
"""
import os
import torch
import gc
import logging
from pydantic import BaseModel, Field, field_validator, ConfigDict
from pydantic_settings import BaseSettings
from typing import Dict, List, Optional, Any, Literal
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from huggingface_hub import login
logger = logging.getLogger(__name__)
# Model type definition for Pro Finance Suite
ModelType = Literal[
"pro-finance-large", "pro-finance-medium", "pro-finance-small",
"pro-finance-mini", "llama-pro-finance-mini", "fin-pythia-1.4b"
]
class TokenizerConfig(BaseModel):
"""Tokenizer configuration for LinguaCustodia models."""
eos_token: str = Field(..., description="End of sequence token")
bos_token: Optional[str] = Field(None, description="Beginning of sequence token")
pad_token: Optional[str] = Field(None, description="Padding token")
unk_token: Optional[str] = Field(None, description="Unknown token")
eos_token_id: int = Field(..., description="EOS token ID")
bos_token_id: Optional[int] = Field(None, description="BOS token ID")
pad_token_id: Optional[int] = Field(None, description="Pad token ID")
vocab_size: int = Field(..., description="Vocabulary size")
model_max_length: int = Field(131072, description="Maximum sequence length")
class GenerationConfig(BaseModel):
"""Generation configuration for LinguaCustodia models."""
eos_tokens: List[int] = Field(..., description="List of EOS token IDs")
bos_token_id: Optional[int] = Field(None, description="BOS token ID")
temperature: float = Field(0.6, description="Sampling temperature")
top_p: float = Field(0.9, description="Top-p sampling parameter")
max_new_tokens: int = Field(150, description="Maximum new tokens to generate")
repetition_penalty: float = Field(1.05, description="Repetition penalty")
no_repeat_ngram_size: int = Field(2, description="No repeat n-gram size")
early_stopping: bool = Field(False, description="Enable early stopping")
min_length: int = Field(50, description="Minimum response length")
class ModelInfo(BaseModel):
"""Model information for LinguaCustodia models."""
model_id: str = Field(..., description="HuggingFace model identifier")
display_name: str = Field(..., description="Human-readable model name")
architecture: str = Field(..., description="Model architecture class")
parameters: str = Field(..., description="Model parameter count")
memory_gb: int = Field(..., description="Required RAM in GB")
vram_gb: int = Field(..., description="Required VRAM in GB")
tokenizer: TokenizerConfig = Field(..., description="Tokenizer configuration")
generation: GenerationConfig = Field(..., description="Generation configuration")
class AppSettings(BaseSettings):
"""Application settings."""
model_name: ModelType = Field(default="pro-finance-small", description="Model to load")
hf_token_lc: Optional[str] = Field(default=None, description="HuggingFace token for LinguaCustodia")
hf_token: Optional[str] = Field(default=None, description="HuggingFace token")
app_port: int = Field(default=7860, description="Application port")
model_config = ConfigDict(
env_file=".env",
env_file_encoding="utf-8",
case_sensitive=False,
extra="ignore"
)
@field_validator('model_name')
@classmethod
def validate_model_name(cls, v):
valid_models = [
"pro-finance-large", "pro-finance-medium", "pro-finance-small",
"pro-finance-mini", "llama-pro-finance-mini", "fin-pythia-1.4b"
]
if v not in valid_models:
raise ValueError(f'Model name must be one of: {valid_models}')
return v
# LinguaCustodia Pro Finance Suite model configurations
LINGUACUSTODIA_MODELS = {
"pro-finance-large": ModelInfo(
model_id="LinguaCustodia/Llama-Pro-Finance-Large",
display_name="Llama Pro Finance Large",
architecture="LlamaForCausalLM",
parameters="70B",
memory_gb=140,
vram_gb=80,
tokenizer=TokenizerConfig(
eos_token="<|eot_id|>",
bos_token="<|begin_of_text|>",
pad_token="<|eot_id|>",
unk_token=None,
eos_token_id=128009,
bos_token_id=128000,
pad_token_id=128009,
vocab_size=128000,
model_max_length=131072
),
generation=GenerationConfig(
eos_tokens=[128001, 128008, 128009],
bos_token_id=128000
)
),
"pro-finance-medium": ModelInfo(
model_id="LinguaCustodia/LLM-Pro-Finance-Medium",
display_name="LLM Pro Finance Medium",
architecture="LlamaForCausalLM",
parameters="32B",
memory_gb=64,
vram_gb=32,
tokenizer=TokenizerConfig(
eos_token="<|eot_id|>",
bos_token="<|begin_of_text|>",
pad_token="<|eot_id|>",
unk_token=None,
eos_token_id=128009,
bos_token_id=128000,
pad_token_id=128009,
vocab_size=128000,
model_max_length=131072
),
generation=GenerationConfig(
eos_tokens=[128001, 128008, 128009],
bos_token_id=128000
)
),
"pro-finance-small": ModelInfo(
model_id="LinguaCustodia/LLM-Pro-Finance-Small",
display_name="LLM Pro Finance Small",
architecture="LlamaForCausalLM",
parameters="8B",
memory_gb=16,
vram_gb=8,
tokenizer=TokenizerConfig(
eos_token="<|eot_id|>",
bos_token="<|begin_of_text|>",
pad_token="<|eot_id|>",
unk_token=None,
eos_token_id=128009,
bos_token_id=128000,
pad_token_id=128009,
vocab_size=128000,
model_max_length=131072
),
generation=GenerationConfig(
eos_tokens=[128001, 128008, 128009],
bos_token_id=128000
)
),
"pro-finance-mini": ModelInfo(
model_id="LinguaCustodia/LLM-Pro-Finance-Mini",
display_name="LLM Pro Finance Mini",
architecture="LlamaForCausalLM",
parameters="3B",
memory_gb=6,
vram_gb=3,
tokenizer=TokenizerConfig(
eos_token="<|eot_id|>",
bos_token="<|begin_of_text|>",
pad_token="<|eot_id|>",
unk_token=None,
eos_token_id=128009,
bos_token_id=128000,
pad_token_id=128009,
vocab_size=128000,
model_max_length=131072
),
generation=GenerationConfig(
eos_tokens=[128001, 128008, 128009],
bos_token_id=128000
)
),
"llama-pro-finance-mini": ModelInfo(
model_id="LinguaCustodia/Llama-Pro-Finance-Mini",
display_name="Llama Pro Finance Mini",
architecture="LlamaForCausalLM",
parameters="1B",
memory_gb=3,
vram_gb=2,
tokenizer=TokenizerConfig(
eos_token="<|eot_id|>",
bos_token="<|begin_of_text|>",
pad_token="<|eot_id|>",
unk_token=None,
eos_token_id=128009,
bos_token_id=128000,
pad_token_id=128009,
vocab_size=128000,
model_max_length=131072
),
generation=GenerationConfig(
eos_tokens=[128001, 128008, 128009],
bos_token_id=128000
)
),
"fin-pythia-1.4b": ModelInfo(
model_id="LinguaCustodia/fin-pythia-1.4b",
display_name="Fin-Pythia 1.4B Financial",
architecture="GPTNeoXForCausalLM",
parameters="1.4B",
memory_gb=3,
vram_gb=2,
tokenizer=TokenizerConfig(
eos_token="<|endoftext|>",
bos_token="<|endoftext|>",
pad_token=None,
unk_token="<|endoftext|>",
eos_token_id=0,
bos_token_id=0,
pad_token_id=None,
vocab_size=50304,
model_max_length=2048
),
generation=GenerationConfig(
eos_tokens=[0],
bos_token_id=0
)
)
}
# Default model configuration
DEFAULT_MODEL = "pro-finance-small"
def get_model_config(model_name: str) -> ModelInfo:
"""Get model configuration by name."""
if model_name not in LINGUACUSTODIA_MODELS:
raise ValueError(f"Model '{model_name}' not found. Available models: {list(LINGUACUSTODIA_MODELS.keys())}")
return LINGUACUSTODIA_MODELS[model_name]
def get_app_settings() -> AppSettings:
"""Get application settings."""
return AppSettings()
def authenticate_huggingface(token: str) -> bool:
"""Authenticate with HuggingFace."""
try:
login(token=token, add_to_git_credential=False)
logger.info("β
Successfully authenticated with HuggingFace")
return True
except Exception as e:
logger.error(f"β HuggingFace authentication failed: {e}")
return False
def setup_gpu_environment():
"""Setup GPU environment."""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
logger.info(f"π GPU available: {torch.cuda.get_device_name(0)}")
logger.info(f"π GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB")
return True
else:
logger.warning("β οΈ No GPU available, using CPU")
return False
def load_model_and_tokenizer(model_info: ModelInfo, use_auth_token: Optional[str] = None):
"""Load model and tokenizer with proper configuration."""
try:
logger.info(f"π Loading model: {model_info.model_id}")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_info.model_id,
token=use_auth_token,
trust_remote_code=True
)
# Configure special tokens
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_info.model_id,
token=use_auth_token,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
device_map="auto"
)
logger.info(f"β
Model loaded successfully: {model_info.display_name}")
return model, tokenizer
except Exception as e:
logger.error(f"β Failed to load model {model_info.model_id}: {e}")
raise
def create_pipeline(model, tokenizer, model_info: ModelInfo):
"""Create inference pipeline."""
try:
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
device_map="auto",
**model_info.generation.model_dump()
)
logger.info("β
Pipeline created successfully")
return pipe
except Exception as e:
logger.error(f"β Failed to create pipeline: {e}")
raise
|