Spaces:
Sleeping
Sleeping
| import os | |
| from openai import AsyncOpenAI | |
| from RagPipeline import RetrievalAugmentedQAPipeline | |
| from typing import List | |
| from chainlit.types import AskFileResponse | |
| from chainlit.cli import run_chainlit | |
| from aimakerspace.text_utils import CharacterTextSplitter, PdfFileLoader, TextFileLoader | |
| from aimakerspace.openai_utils.prompts import ( | |
| UserRolePrompt, | |
| SystemRolePrompt, | |
| AssistantRolePrompt, | |
| ) | |
| from aimakerspace.openai_utils.embedding import EmbeddingModel | |
| from aimakerspace.vectordatabase import VectorDatabase, VectorDatabaseOptions | |
| from aimakerspace.openai_utils.chatmodel import ChatOpenAI | |
| import chainlit as cl | |
| from langchain_text_splitters import RecursiveCharacterTextSplitter | |
| # Instrument the OpenAI client | |
| # cl.instrument_openai() | |
| ##### Prompt Templates ##### | |
| system_template = """\ | |
| Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer.""" | |
| user_prompt_template = """\ | |
| Context: | |
| {context} | |
| Question: | |
| {question} | |
| """ | |
| system_role_prompt = SystemRolePrompt(system_template) | |
| user_role_prompt = UserRolePrompt(user_prompt_template) | |
| ### Text Chunking ### | |
| # text_splitter = CharacterTextSplitter() | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| separators=[ | |
| "\n\n", | |
| "\n", | |
| " ", | |
| ".", | |
| ",", | |
| "\u200b", # Zero-width space | |
| "\uff0c", # Fullwidth comma | |
| "\u3001", # Ideographic comma | |
| "\uff0e", # Fullwidth full stop | |
| "\u3002", # Ideographic full stop | |
| "", | |
| ], | |
| ) | |
| def process_text_file(file: AskFileResponse) -> List[str]: | |
| import tempfile | |
| with tempfile.NamedTemporaryFile( | |
| mode="wb", delete=False, suffix=".txt" | |
| ) as temp_file: | |
| temp_file_path = temp_file.name | |
| temp_file.write(file.content) | |
| text_loader = TextFileLoader(temp_file_path) | |
| documents = text_loader.load_documents() | |
| texts = [] | |
| for doc in documents: | |
| texts += text_splitter.split_text(doc) | |
| return texts | |
| def process_pdf_file(file: AskFileResponse) -> List[str]: | |
| import tempfile | |
| with tempfile.NamedTemporaryFile( | |
| mode="wb", delete=False, suffix=".pdf" | |
| ) as temp_file: | |
| temp_file_path = temp_file.name | |
| temp_file.write(file.content) | |
| pdf_loader = PdfFileLoader(temp_file_path) | |
| texts = pdf_loader.load_documents() # Also handles splitting the text in this case pages | |
| return texts | |
| async def send_new_message(content, elemets=None): | |
| msg = cl.Message(content,elements=elemets) | |
| await msg.send() | |
| return msg | |
| async def on_chat_start(): | |
| print("On Chat Start") | |
| # await send_new_message("Welcome to the Chat with Files app!") | |
| msg = cl.Message(content="Welcome to the Chat with Files app!") | |
| await msg.send() | |
| print("After First message") | |
| files = None | |
| # Wait for the user to upload a file | |
| while files == None: | |
| files = await cl.AskFileMessage( | |
| content="Please upload a text file to begin!", | |
| accept=["text/plain", "application/pdf"], | |
| max_size_mb=10, | |
| max_files=4, | |
| timeout=180, | |
| ).send() | |
| texts : List[str] = [] | |
| for file in files: | |
| if file.type == "application/pdf": | |
| texts += process_pdf_file(file) | |
| if file.type == "text/plain": | |
| texts += process_text_file(file) | |
| # await send_new_message(content=f"Processing `{file.name}`...") | |
| msg = cl.Message(content=f"Processing `{file.name}`...") | |
| await msg.send() | |
| print(f"Processing {len(texts)} text chunks") | |
| # Create a dict vector store | |
| vector_db_options =VectorDatabaseOptions.QDRANT | |
| embedding_model = EmbeddingModel(embeddings_model_name= "text-embedding-3-small",dimensions=1000) | |
| vector_db = VectorDatabase(vector_db_options,embedding_model) | |
| vector_db = await vector_db.abuild_from_list(texts) | |
| chat_openai = ChatOpenAI() | |
| # Create a chain | |
| retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(system_role_prompt, user_role_prompt, | |
| vector_db_retriever=vector_db, llm=chat_openai | |
| ) | |
| # Let the user know that the system is ready | |
| msg = cl.Message(content=f"Processing `{file.name}` done. You can now ask questions!") | |
| await msg.send() | |
| cl.user_session.set("chain", retrieval_augmented_qa_pipeline) | |
| async def main(message: cl.Message): | |
| msg = cl.Message(content="on message") | |
| await msg.send() | |
| chain :RetrievalAugmentedQAPipeline = cl.user_session.get("chain") | |
| msg = cl.Message(content="") | |
| result = await chain.arun_pipeline(message.content) | |
| async for stream_resp in result.get('response'): | |
| await msg.stream_token(stream_resp) | |
| await msg.send() | |
| cl.user_session.set("chain", chain) | |
| if __name__ == "__main__": | |
| run_chainlit(__file__) | |