File size: 14,445 Bytes
5263a14
5c80b4d
370d5e9
 
 
5c80b4d
370d5e9
 
5c80b4d
370d5e9
5c80b4d
370d5e9
5c80b4d
 
370d5e9
 
 
 
 
5c80b4d
370d5e9
 
 
 
 
5c80b4d
 
 
370d5e9
 
 
 
 
 
 
 
 
 
 
 
 
 
5c80b4d
370d5e9
 
 
5c80b4d
 
 
 
 
 
 
 
 
 
 
 
 
 
5263a14
370d5e9
 
5263a14
 
 
 
 
370d5e9
 
 
 
 
 
5263a14
 
 
370d5e9
 
 
 
 
 
 
 
5263a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
370d5e9
5263a14
370d5e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5263a14
370d5e9
5263a14
5c80b4d
5263a14
 
 
370d5e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c80b4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5263a14
 
 
 
 
 
 
 
5c80b4d
 
 
 
370d5e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c80b4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5263a14
 
5c80b4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5263a14
 
5c80b4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
370d5e9
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
from fastapi import FastAPI, HTTPException, UploadFile, File, Depends, BackgroundTasks, Form
from fastapi.concurrency import run_in_threadpool
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Dict, Any, Optional
import os
import shutil
from datetime import datetime
from dotenv import load_dotenv
from sqlalchemy.orm import Session

load_dotenv("../.env") # Load from root
load_dotenv(".env", override=True) # Load from local backend .env (prioritize)

from agent import app as agent_app, vector_store
from langchain_core.messages import HumanMessage, AIMessage
from langchain_community.document_loaders import PyPDFLoader, TextLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from database import get_db, init_db, Conversation, Message as DBMessage

app = FastAPI()

@app.on_event("startup")
async def startup_event():
    # Initialize database tables
    init_db()
    
    tavily_key = os.getenv("TAVILY_API_KEY")
    if tavily_key:
        print(f"Startup: TAVILY_API_KEY found: {tavily_key[:5]}...")
    else:
        print("Startup: TAVILY_API_KEY NOT found!")

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Pydantic models
class ChatRequest(BaseModel):
    message: str
    history: List[Dict[str, str]] = []
    conversation_id: Optional[str] = None
    user_id: Optional[str] = None

class ConversationCreate(BaseModel):
    user_id: str
    title: str = "New Chat"

class ConversationResponse(BaseModel):
    id: str
    user_id: str
    title: str
    created_at: str
    updated_at: str
    message_count: int = 0
    summary: Optional[str] = None

@app.post("/api/upload")
async def upload_file(file: UploadFile = File(...), conversation_id: str = Form(...)):
    print(f"DEBUG: Uploading file {file.filename} to conversation {conversation_id}")
    if not conversation_id or conversation_id == "null" or conversation_id == "undefined":
        print("ERROR: Invalid conversation_id received in upload_file")
        raise HTTPException(status_code=400, detail="Please start a conversation first!")
    try:
        # Save file temporarily
        file_path = f"temp_{file.filename}"
        with open(file_path, "wb") as buffer:
            shutil.copyfileobj(file.file, buffer)
        
        # Process file
        from agent import upload_file as agent_upload
        splits = agent_upload(file_path, conversation_id)
        
        # Cleanup
        os.remove(file_path)
        
        return {"status": "success", "message": f"Processed {len(splits)} chunks"}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.delete("/api/vector_store")
async def clear_vector_store_endpoint():
    try:
        from agent import clear_vector_store
        success = clear_vector_store()
        if success:
            return {"status": "success", "message": "Vector store cleared"}
        else:
            raise HTTPException(status_code=500, detail="Failed to clear vector store")
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

async def generate_conversation_summary(conversation_id: str, db: Session):
    """Background task to generate a summary for a conversation."""
    try:
        # Get messages
        messages = db.query(DBMessage).filter(
            DBMessage.conversation_id == conversation_id
        ).order_by(DBMessage.created_at).limit(10).all() # Limit to first 10 for summary
        
        if not messages:
            return

        conversation_text = "\n".join([f"{msg.role}: {msg.content}" for msg in messages])
        
        from langchain_google_genai import ChatGoogleGenerativeAI
        from langchain_core.prompts import ChatPromptTemplate
        from langchain_core.output_parsers import StrOutputParser
        
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
        
        system = """You are a helpful assistant. Create a very short, 1-sentence summary (max 10 words) of this conversation topic.
        Example: "Python script debugging", "Recipe for chocolate cake", "Travel plans to Japan".
        """
        
        prompt = ChatPromptTemplate.from_messages([
            ("system", system),
            ("human", "Conversation:\n{text}")
        ])
        
        chain = prompt | llm | StrOutputParser()
        summary = chain.invoke({"text": conversation_text})
        
        # Update conversation
        conversation = db.query(Conversation).filter(Conversation.id == conversation_id).first()
        if conversation:
            conversation.summary = summary.strip()
            db.commit()
            print(f"Generated summary for {conversation_id}: {summary}")
            
    except Exception as e:
        print(f"Error generating summary: {e}")

@app.post("/api/chat")
def chat_endpoint(request: ChatRequest, background_tasks: BackgroundTasks, db: Session = Depends(get_db)):
    try:
        # Convert history to LangChain messages
        messages = []
        for msg in request.history:
            if msg["role"] == "user":
                messages.append(HumanMessage(content=msg["content"]))
            elif msg["role"] == "assistant":
                messages.append(AIMessage(content=msg["content"]))
        
        # Add current message
        messages.append(HumanMessage(content=request.message))
        
        # Invoke Agent
        # Deep Research Graph expects 'task'
        inputs = {
            "task": request.message,
            "plan": [],
            "content": [],
            "revision_number": 0,
            "max_revisions": 2,
            "steps": [],
            "messages": [HumanMessage(content=request.message)],
            "youtube_url": "",
            "youtube_captions": "",
            "deep_research": False, # Will be set by router
            "conversation_id": request.conversation_id
        }
        
        result = agent_app.invoke(inputs)
        
        # Get final report
        final_response = result.get("final_report", "No report generated.")
        
        # Extract steps
        steps = result.get("steps", [])
        thoughts = []
        for step in steps:
            thoughts.append({
                "tool": "agent_step",
                "input": step,
                "status": "completed"
            })
        
        # Save to database if conversation_id and user_id provided
        if db and request.conversation_id and request.user_id:
            try:
                # Verify conversation exists and belongs to user
                conversation = db.query(Conversation).filter(
                    Conversation.id == request.conversation_id,
                    Conversation.user_id == request.user_id
                ).first()
                
                if conversation:
                    # Save user message
                    user_msg = DBMessage(
                        conversation_id=request.conversation_id,
                        role="user",
                        content=request.message
                    )
                    db.add(user_msg)
                    
                    # Save assistant message
                    assistant_msg = DBMessage(
                        conversation_id=request.conversation_id,
                        role="assistant",
                        content=final_response,
                        thoughts=thoughts if thoughts else None
                    )
                    db.add(assistant_msg)
                    
                    # Update conversation timestamp
                    conversation.updated_at = datetime.utcnow()
                    
                    db.commit()
                    
                    # Trigger summary generation if it's the first few messages or summary is missing
                    # We can check message count or just do it periodically
                    # For simplicity, let's do it if message count is small (< 5) or summary is None
                    message_count = db.query(DBMessage).filter(DBMessage.conversation_id == request.conversation_id).count()
                    if message_count <= 4 or not conversation.summary:
                         background_tasks.add_task(generate_conversation_summary, request.conversation_id, db)

            except Exception as db_error:
                print(f"Database error: {db_error}")
                db.rollback()
        
        return {"response": final_response, "thoughts": thoughts}
    except Exception as e:
        print(f"Error in chat endpoint: {e}")
        raise HTTPException(status_code=500, detail=str(e))

class SummarizeRequest(BaseModel):
    content: str

@app.post("/api/summarize")
async def summarize_endpoint(request: SummarizeRequest):
    try:
        from langchain_google_genai import ChatGoogleGenerativeAI
        from langchain_core.prompts import ChatPromptTemplate
        from langchain_core.output_parsers import StrOutputParser
        
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
        
        system = """You are a professional summarizer. Create a concise summary of the provided content.
        
        Guidelines:
        1. Keep it to 3-5 sentences
        2. Capture the main points and key takeaways
        3. Use clear, simple language
        4. Maintain the professional tone
        """
        
        prompt = ChatPromptTemplate.from_messages([
            ("system", system),
            ("human", "Summarize this content:\n\n{content}")
        ])
        
        chain = prompt | llm | StrOutputParser()
        summary = chain.invoke({"content": request.content})
        
        return {"summary": summary}
    except Exception as e:
        print(f"Error in summarize endpoint: {e}")
        raise HTTPException(status_code=500, detail=str(e))



# ====================
# CONVERSATION ENDPOINTS
# ====================

@app.post("/api/conversations")
async def create_conversation(conv: ConversationCreate, db: Session = Depends(get_db)):
    """Create a new conversation for a user."""
    if not db:
        raise HTTPException(status_code=503, detail="Database not configured")
    
    try:
        new_conv = Conversation(
            user_id=conv.user_id,
            title=conv.title
        )
        db.add(new_conv)
        db.commit()
        db.refresh(new_conv)
        
        return {
            "id": new_conv.id,
            "user_id": new_conv.user_id,
            "title": new_conv.title,
            "created_at": new_conv.created_at.isoformat(),
            "updated_at": new_conv.updated_at.isoformat(),
            "message_count": 0,
            "summary": None
        }
    except Exception as e:
        db.rollback()
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/api/conversations")
async def get_conversations(user_id: str, db: Session = Depends(get_db)):
    """Get all conversations for a user."""
    if not db:
        return []
    
    try:
        conversations = db.query(Conversation).filter(
            Conversation.user_id == user_id
        ).order_by(Conversation.updated_at.desc()).all()
        
        result = []
        for conv in conversations:
            message_count = db.query(DBMessage).filter(
                DBMessage.conversation_id == conv.id
            ).count()
            
            result.append({
                "id": conv.id,
                "user_id": conv.user_id,
                "title": conv.title,
                "created_at": conv.created_at.isoformat(),
                "updated_at": conv.updated_at.isoformat(),
                "message_count": message_count,
                "summary": conv.summary
            })
        
        return result
    except Exception as e:
        print(f"Error fetching conversations: {e}")
        return []

@app.get("/api/conversations/{conversation_id}/messages")
async def get_messages(conversation_id: str, user_id: str, db: Session = Depends(get_db)):
    """Get all messages for a conversation."""
    if not db:
        return []
    
    try:
        # Verify conversation belongs to user
        conversation = db.query(Conversation).filter(
            Conversation.id == conversation_id,
            Conversation.user_id == user_id
        ).first()
        
        if not conversation:
            raise HTTPException(status_code=404, detail="Conversation not found")
        
        messages = db.query(DBMessage).filter(
            DBMessage.conversation_id == conversation_id
        ).order_by(DBMessage.created_at).all()
        
        return [{
            "id": msg.id,
            "role": msg.role,
            "content": msg.content,
            "thoughts": msg.thoughts,
            "created_at": msg.created_at.isoformat()
        } for msg in messages]
    except HTTPException:
        raise
    except Exception as e:
        print(f"Error fetching messages: {e}")
        return []

@app.delete("/api/conversations/{conversation_id}")
async def delete_conversation(conversation_id: str, user_id: str, db: Session = Depends(get_db)):
    """Delete a conversation and all its messages."""
    if not db:
        raise HTTPException(status_code=503, detail="Database not configured")
    
    try:
        conversation = db.query(Conversation).filter(
            Conversation.id == conversation_id,
            Conversation.user_id == user_id
        ).first()
        
        if not conversation:
            raise HTTPException(status_code=404, detail="Conversation not found")
        
        db.delete(conversation)
        db.commit()
        
        return {"status": "success", "message": "Conversation deleted"}
    except HTTPException:
        raise
    except Exception as e:
        db.rollback()
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/api/health")
async def health_check():
    return {"status": "ok"}

@app.get("/")
async def root():
    return {"message": "RAG Backend is running"}

# Serve static files (Frontend) - to be configured after build
# app.mount("/", StaticFiles(directory="../frontend/out", html=True), name="static")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)