File size: 16,180 Bytes
9b8b5a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8834675
 
 
 
 
 
 
9b8b5a0
 
8834675
 
9b8b5a0
 
8834675
 
 
 
9b8b5a0
 
8834675
 
 
 
 
 
 
 
 
 
9b8b5a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8834675
 
 
 
 
 
9b8b5a0
8834675
 
 
9b8b5a0
 
 
 
 
 
 
 
 
064b936
 
 
 
 
 
 
 
 
9b8b5a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>Conversational LLM-Based Decision Support for Defect Classification in AFM Images</title>
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.5.0/css/all.min.css">
  <style>
    :root {
      --primary-color: #0f172a;
      --secondary-color: #1e293b;
      --accent-color: #3b82f6;
      --text-primary: #e2e8f0;
      --text-secondary: #94a3b8;
      --border-color: #334155;
      --gradient: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
      --card-bg: rgba(30, 41, 59, 0.7);
      --glass-bg: rgba(255, 255, 255, 0.05);
      --blur: blur(10px);
    }

    * {
      margin: 0;
      padding: 0;
      box-sizing: border-box;
    }

    body {
      font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif;
      background: var(--primary-color);
      color: var(--text-primary);
      line-height: 1.6;
      overflow-x: hidden;
    }

    .hero {
      min-height: 100vh;
      display: grid;
      place-items: center;
      position: relative;
      background: var(--gradient);
      overflow: hidden;
    }

    .hero::before {
      content: '';
      position: absolute;
      top: 0;
      left: 0;
      right: 0;
      bottom: 0;
      background: url('data:image/svg+xml,<svg width="60" height="60" viewBox="0 0 60 60" xmlns="http://www.w3.org/2000/svg"><g fill="none" fill-rule="evenodd"><g fill="%23ffffff" fill-opacity="0.05"><circle cx="30" cy="30" r="1"/></g></svg>') repeat;
      animation: float 20s ease-in-out infinite;
    }

    @keyframes float {
      0%, 100% { transform: translateY(0) rotate(0deg); }
      50% { transform: translateY(-20px) rotate(180deg); }
    }

    .hero-content {
      text-align: center;
      z-index: 1;
      max-width: 800px;
      padding: 2rem;
    }

    .hero h1 {
      font-size: clamp(2.5rem, 5vw, 4rem);
      font-weight: 700;
      margin-bottom: 1rem;
      background: linear-gradient(to right, #fff, #cbd5e1);
      -webkit-background-clip: text;
      -webkit-text-fill-color: transparent;
      background-clip: text;
    }

    .hero p {
      font-size: 1.25rem;
      color: rgba(255, 255, 255, 0.8);
      margin-bottom: 2rem;
    }

    .authors {
      display: block;
      max-width: 900px;
      margin: 2rem auto;
      text-align: center;
      font-size: 1.1rem;
      line-height: 1.5;
      color: #ffffff;
    }

    .authors strong {
      color: #ffffff;
    }

    .authors sup {
      color: #a0c4ff;
      font-size: 0.8em;
      vertical-align: super;
    }

    .affiliations {
      margin-top: 1.5rem;
      font-size: 0.95rem;
      color: #d1d5db;
      line-height: 1.6;
    }

    .affiliations span {
      display: block;
      margin-bottom: 0.5rem;
    }

    .abstract {
      max-width: 1000px;
      margin: 4rem auto;
      padding: 2rem;
    }

    .abstract-card {
      background: var(--card-bg);
      border: 1px solid var(--border-color);
      border-radius: 1.5rem;
      padding: 2.5rem;
      position: relative;
      overflow: hidden;
    }

    .abstract-card::before {
      content: '';
      position: absolute;
      top: 0;
      left: 0;
      right: 0;
      height: 3px;
      background: var(--gradient);
    }

    .section-title {
      font-size: 2rem;
      margin-bottom: 1.5rem;
      display: flex;
      align-items: center;
      gap: 1rem;
    }

    .section-title i {
      color: var(--accent-color);
    }

    .framework {
      margin: 4rem 0;
    }

    .framework-grid {
      display: grid;
      grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
      gap: 2rem;
      margin: 2rem 0;
    }

    .framework-step {
      background: var(--card-bg);
      border: 1px solid var(--border-color);
      border-radius: 1rem;
      padding: 2rem;
      text-align: center;
      transition: transform 0.3s ease, box-shadow 0.3s ease;
      position: relative;
      overflow: hidden;
    }

    .framework-step:hover {
      transform: translateY(-5px);
      box-shadow: 0 10px 30px rgba(0, 0, 0, 0.3);
    }

    .framework-step::before {
      content: '';
      position: absolute;
      top: 0;
      left: 0;
      right: 0;
      bottom: 0;
      background: var(--gradient);
      opacity: 0;
      transition: opacity 0.3s ease;
    }

    .framework-step:hover::before {
      opacity: 0.1;
    }

    .step-icon {
      font-size: 3rem;
      margin-bottom: 1rem;
      background: var(--gradient);
      -webkit-background-clip: text;
      -webkit-text-fill-color: transparent;
      background-clip: text;
    }

    .results {
      margin: 4rem 0;
    }

    .metrics-grid {
      display: grid;
      grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
      gap: 1.5rem;
    }

    .metric-card {
      background: var(--card-bg);
      border: 1px solid var(--border-color);
      border-radius: 1rem;
      padding: 1.5rem;
      text-align: center;
      transition: all 0.3s ease;
    }

    .metric-card:hover {
      transform: scale(1.05);
      border-color: var(--accent-color);
    }

    .metric-value {
      font-size: 2.5rem;
      font-weight: 700;
      color: var(--accent-color);
      margin-bottom: 0.5rem;
    }

    .chat-demo {
      margin: 4rem 0;
    }

    .chat-window {
      background: var(--card-bg);
      border: 1px solid var(--border-color);
      border-radius: 1rem;
      overflow: hidden;
      max-width: 600px;
      margin: 0 auto;
    }

    .chat-header {
      background: var(--secondary-color);
      padding: 1rem;
      border-bottom: 1px solid var(--border-color);
      display: flex;
      align-items: center;
      gap: 0.5rem;
    }

    .chat-header i {
      color: #10b981;
    }

    .chat-messages {
      height: 300px;
      overflow-y: auto;
      padding: 1rem;
    }

    .message {
      margin-bottom: 1rem;
      padding: 0.75rem 1rem;
      border-radius: 1rem;
      max-width: 80%;
    }

    .message.user {
      background: var(--accent-color);
      margin-left: auto;
    }

    .message.assistant {
      background: var(--secondary-color);
      border: 1px solid var(--border-color);
    }

    .links {
      text-align: center;
      margin: 4rem 0;
    }

    .cta-button {
      display: inline-flex;
      align-items: center;
      gap: 0.5rem;
      background: var(--gradient);
      color: white;
      padding: 1rem 2rem;
      border-radius: 2rem;
      text-decoration: none;
      font-weight: 600;
      transition: all 0.3s ease;
      box-shadow: 0 4px 15px rgba(59, 130, 246, 0.3);
    }

    .cta-button:hover {
      transform: translateY(-2px);
      box-shadow: 0 6px 20px rgba(59, 130, 246, 0.4);
    }

    .floating-particles {
      position: fixed;
      top: 0;
      left: 0;
      width: 100%;
      height: 100%;
      pointer-events: none;
      z-index: -1;
    }

    .particle {
      position: absolute;
      width: 2px;
      height: 2px;
      background: var(--accent-color);
      border-radius: 50%;
      animation: particle-float 10s linear infinite;
    }

    @keyframes particle-float {
      0% {
        transform: translateY(100vh) rotate(0deg);
        opacity: 0;
      }
      10% {
        opacity: 1;
      }
      90% {
        opacity: 1;
      }
      100% {
        transform: translateY(-100vh) rotate(360deg);
        opacity: 0;
      }
    }

    @media (max-width: 768px) {
      .hero {
        padding: 1rem;
      }
      
      .authors {
        grid-template-columns: 1fr;
      }
      
      .abstract-card {
        padding: 1.5rem;
      }
      
      .framework-grid {
        grid-template-columns: 1fr;
      }
    }

    .scroll-indicator {
      position: absolute;
      bottom: 2rem;
      left: 50%;
      transform: translateX(-50%);
      animation: bounce 2s infinite;
      color: rgba(255, 255, 255, 0.6);
    }

    @keyframes bounce {
      0%, 100% { transform: translateX(-50%) translateY(0); }
      50% { transform: translateX(-50%) translateY(-10px); }
    }
  </style>
</head>
<body>
  <div class="floating-particles" id="particles"></div>

  <section class="hero">
    <div class="hero-content">
      <h1>Conversational LLM-Based Decision Support for Defect Classification in AFM Images</h1>
      <p>Revolutionizing nanoscale imaging through AI-powered defect detection and real-time guidance</p>
      
      <div class="authors">
        <strong>ANGONA BISWAS<sup></sup>, JAYDEEP RADE<sup></sup>, NABILA MASUD<sup>1</sup>, MD HASIBUL HASAN HASIB<sup>1</sup>, ADITYA BALU<sup>3</sup>, JUNTAO ZHANG<sup>2</sup>, SOUMIK SARKAR<sup>2</sup>, ADARSH KRISHNAMURTHY<sup>1,2</sup>, JUAN REN<sup>2</sup>, and ANWESHA SARKAR<sup>1</sup></strong>
        <div class="affiliations">
          <span><sup>1</sup>Department of Electrical and Computer Engineering, Iowa State University, 2520 Osborn Dr., Ames, 50011, IA, USA</span>
          <span><sup>2</sup>Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA</span>
          <span><sup>3</sup>Translational AI Center, Black Engineering, 2529 Union Dr Suite 2024, Ames, IA 50011, USA</span>
          <span><sup>§</sup>Equal Contribution</span>
        </div>
        <p style="margin-top:1rem;font-size:1rem;">
          <i class="fas fa-envelope"></i> <strong>CORRESPONDING AUTHOR:</strong> Anwesha Sarkar (e-mail: anweshas@iastate.edu)
        </p>
      </div>
    </div>
    
    <div class="scroll-indicator">
      <i class="fas fa-chevron-down fa-2x"></i>
    </div>
  </section>

  <main style="max-width: 1200px; margin: 0 auto; padding: 2rem;">
    <div style="text-align:center;margin-bottom:1.5rem;">
      <a href="https://github.com/idealab-isu/AFM-LLM-Defect-Guidance" target="_blank" class="cta-button">
        <i class="fab fa-github"></i> GitHub
      </a>
      <a href="https://ieeexplore.ieee.org/document/11096088" target="_blank" class="cta-button" style="margin-left:1rem;">
        <i class="fas fa-file-alt"></i> Paper
      </a>
    </div>

    <section class="abstract">
      <div class="abstract-card">
        <h2 class="section-title">
          <i class="fas fa-file-alt"></i>
          Abstract
        </h2>
        <p>
          Atomic Force Microscopy (AFM) has emerged as a powerful tool for nanoscale imaging and quantitative characterization of organic (e.g., live cells, proteins, DNA, lipid bilayers) and inorganic (e.g., silicon wafers, polymers) specimens. However, image artifacts in AFM height and peak force error images directly affect the precision of nanomechanical measurements. Experimentalists face considerable challenges in obtaining high-quality AFM images due to the requirement of specialized expertise and constant manual monitoring.
        </p>
        <br>
        <p>
          Another challenge is the lack of high-quality AFM datasets to train machine learning models for automated defect detection. In this work, we propose a two-step AI framework that combines a vision-based deep learning (DL) model for classifying AFM image defects with a Large Language Models (LLMs)-based conversational assistant that provides real-time corrective guidance in natural language, making it particularly valuable for non-AFM experts aiming to obtain high-quality images.
        </p>
        <br>
        <p>
          We curated an annotated AFM defect dataset spanning organic and inorganic samples to train the defect detection model. Our defect classification model achieves <strong>91.43% overall accuracy</strong>, with a recall of <strong>93% for tip contamination</strong> and <strong>60% for not-tracking defects</strong>.
        </p>
      </div>
    </section>

    <section class="framework">
      <h2 class="section-title">
        <i class="fas fa-sitemap"></i>
        Two-Step AI Framework
      </h2>
      
      <div class="framework-grid">
        <div class="framework-step">
          <div class="step-icon">
            <i class="fas fa-eye"></i>
          </div>
          <h3>Vision Model</h3>
          <p>Deep learning model classifies defects in AFM images with 91.43% accuracy</p>
        </div>
        
        <div class="framework-step">
          <div class="step-icon">
            <i class="fas fa-comments"></i>
          </div>
          <h3>LLM Assistant</h3>
          <p>Conversational AI provides real-time guidance in natural language</p>
        </div>
        
        <div class="framework-step">
          <div class="step-icon">
            <i class="fas fa-desktop"></i>
          </div>
          <h3>Unified Interface</h3>
          <p>Seamless interaction between DL model and LLM-based guidance</p>
        </div>
      </div>
    </section>

    <section class="results">
      <h2 class="section-title">
        <i class="fas fa-chart-bar"></i>
        Model Performance
      </h2>
      
      <div class="metrics-grid">
        <div class="metric-card">
          <div class="metric-value">91.43%</div>
          <p>Overall Accuracy</p>
        </div>
        
        <div class="metric-card">
          <div class="metric-value">93%</div>
          <p>Tip Contamination Recall</p>
        </div>
        
        <div class="metric-card">
          <div class="metric-value">60%</div>
          <p>Not-Tracking Recall</p>
        </div>
      </div>
    </section>

    <section class="chat-demo">
      <h2 class="section-title">
        <i class="fas fa-robot"></i>
        Interactive Demo
      </h2>
      
      <div class="chat-window">
        <div class="chat-header">
          <i class="fas fa-circle fa-xs"></i>
          <span>AFM Assistant</span>
        </div>
        
        <div class="chat-messages">
          <div class="message user">
            I see flat lines in my topography image that suggest tracking failure —what environmental or scanner factors could be contributing to this, and how do I address them?
          </div>
          
          <div class="message assistant">
            1. Adjust feedback parameters: increase the proportional/integral gains cautiously<br><br>
            2. Increase setpoint force to maintain better tip-sample contact<br><br>
            3. For persistent problems, try changing scan direction or starting position<br><br>
            4. Decrease scan speed to give the feedback loop more time
          </div>
        </div>
      </div>
    </section>

    <section class="links">
      <a href="https://github.com/idealab-isu/AFM-LLM-Defect-Guidance" class="cta-button" target="_blank">
        <i class="fab fa-github"></i>
        View on GitHub
      </a>
    </section>
  </main>

  <script>
    // Floating particles animation
    const particlesContainer = document.getElementById('particles');
    const particleCount = 50;

    for (let i = 0; i < particleCount; i++) {
      const particle = document.createElement('div');
      particle.className = 'particle';
      particle.style.left = Math.random() * 100 + '%';
      particle.style.animationDelay = Math.random() * 10 + 's';
      particle.style.animationDuration = (Math.random() * 10 + 10) + 's';
      particlesContainer.appendChild(particle);
    }

    // Smooth scroll
    document.querySelector('.scroll-indicator').addEventListener('click', () => {
      document.querySelector('.abstract').scrollIntoView({ behavior: 'smooth' });
    });

    // Intersection Observer for animations
    const observerOptions = {
      threshold: 0.1,
      rootMargin: '0px 0px -50px 0px'
    };

    const observer = new IntersectionObserver((entries) => {
      entries.forEach(entry => {
        if (entry.isIntersecting) {
          entry.target.style.opacity = '1';
          entry.target.style.transform = 'translateY(0)';
        }
      });
    }, observerOptions);

    document.querySelectorAll('.framework-step, .metric-card').forEach(el => {
      el.style.opacity = '0';
      el.style.transform = 'translateY(20px)';
      el.style.transition = 'opacity 0.6s ease, transform 0.6s ease';
      observer.observe(el);
    });
  </script>
</body>
</html>