Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import argparse | |
| import json | |
| import logging | |
| import os | |
| import sys | |
| import pathlib | |
| import random | |
| import shutil | |
| import time | |
| from typing import Any, Dict, List, Union | |
| import numpy as np | |
| import pandas as pd | |
| from sklearn.feature_extraction.text import (CountVectorizer, TfidfTransformer, HashingVectorizer, | |
| TfidfVectorizer) | |
| from sklearn.linear_model import LogisticRegression | |
| from sklearn.metrics import f1_score | |
| from sklearn.model_selection import train_test_split | |
| from tqdm import tqdm | |
| from lr.hyperparameters import SEARCH_SPACE, RandomSearch, HyperparameterSearch | |
| from shutil import rmtree | |
| def load_model(serialization_dir): | |
| with open(os.path.join(serialization_dir, "best_hyperparameters.json"), 'r') as f: | |
| hyperparameters = json.load(f) | |
| if hyperparameters.pop('stopwords') == 1: | |
| stop_words = 'english' | |
| else: | |
| stop_words = None | |
| weight = hyperparameters.pop('weight') | |
| if weight == 'binary': | |
| binary = True | |
| else: | |
| binary = False | |
| ngram_range = hyperparameters.pop('ngram_range') | |
| ngram_range = sorted([int(x) for x in ngram_range.split()]) | |
| if weight == 'tf-idf': | |
| vect = TfidfVectorizer(stop_words=stop_words, | |
| lowercase=True, | |
| ngram_range=ngram_range) | |
| elif weight == 'hash': | |
| vect = HashingVectorizer(stop_words=stop_words,lowercase=True,ngram_range=ngram_range) | |
| else: | |
| vect = CountVectorizer(binary=binary, | |
| stop_words=stop_words, | |
| lowercase=True, | |
| ngram_range=ngram_range) | |
| if weight != "hash": | |
| with open(os.path.join(serialization_dir, "vocab.json"), 'r') as f: | |
| vocab = json.load(f) | |
| vect.vocabulary_ = vocab | |
| hyperparameters['C'] = float(hyperparameters['C']) | |
| hyperparameters['tol'] = float(hyperparameters['tol']) | |
| classifier = LogisticRegression(**hyperparameters) | |
| if os.path.exists(os.path.join(serialization_dir, "archive", "idf.npy")): | |
| vect.idf_ = np.load(os.path.join(serialization_dir, "archive", "idf.npy")) | |
| classifier.coef_ = np.load(os.path.join(serialization_dir, "archive", "coef.npy")) | |
| classifier.intercept_ = np.load(os.path.join(serialization_dir, "archive", "intercept.npy")) | |
| classifier.classes_ = np.load(os.path.join(serialization_dir, "archive", "classes.npy")) | |
| return classifier, vect | |
| def score(x, clf, vectorizer): | |
| # score a single document | |
| return clf.predict_proba(vectorizer.transform([x])) | |
| clf, vectorizer = load_model("model/") | |
| def start(text): | |
| k = round(score(text, clf, vectorizer)[0][1], 2) | |
| return {"GPT-3 Filter Quality Score": k } | |