Spaces:
Runtime error
Runtime error
| import argparse | |
| import json | |
| import logging | |
| import os | |
| import pathlib | |
| import random | |
| import shutil | |
| import time | |
| from typing import Any, Dict, List, Union | |
| import seaborn as sns | |
| import sys | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import pandas as pd | |
| # Create a custom logger | |
| logger = logging.getLogger(__name__) | |
| logger.setLevel(logging.DEBUG) | |
| def load_model(hyperparameters): | |
| if hyperparameters.pop('stopwords') == 1: | |
| stop_words = 'english' | |
| else: | |
| stop_words = None | |
| weight = hyperparameters.pop('weight') | |
| if weight == 'binary': | |
| binary = True | |
| else: | |
| binary = False | |
| ngram_range = hyperparameters.pop('ngram_range') | |
| ngram_range = sorted([int(x) for x in ngram_range.split()]) | |
| if weight == 'tf-idf': | |
| vect = TfidfVectorizer(stop_words=stop_words, | |
| lowercase=True, | |
| ngram_range=ngram_range) | |
| else: | |
| vect = CountVectorizer(binary=binary, | |
| stop_words=stop_words, | |
| lowercase=True, | |
| ngram_range=ngram_range) | |
| hyperparameters['C'] = float(hyperparameters['C']) | |
| hyperparameters['tol'] = float(hyperparameters['tol']) | |
| classifier = LogisticRegression(**hyperparameters) | |
| return classifier, vect | |
| def eval_lr(test, | |
| classifier, | |
| vect): | |
| start = time.time() | |
| X_test = vect.fit_transform(tqdm(test.text, desc="fitting and transforming data")) | |
| end = time.time() | |
| preds = classifier.predict(X_test) | |
| return f1_score(test.label, preds, average='macro'), classifier.score(X_test, test.label) | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--results_file', '-m', type=str) | |
| parser.add_argument('--performance_metric', '-p', type=str) | |
| parser.add_argument('--hyperparameter', '-x', type=str) | |
| parser.add_argument('--logx', action='store_true') | |
| parser.add_argument('--boxplot', action='store_true') | |
| args = parser.parse_args() | |
| if not os.path.exists(args.results_file): | |
| print(f"Results file {args.results_file} does not exist. Aborting! ") | |
| sys.exit(1) | |
| else: | |
| df = pd.read_json(args.results_file, lines=True) | |
| if args.boxplot: | |
| ax = sns.boxplot(df[args.hyperparameter], df[args.performance_metric]) | |
| else: | |
| ax = sns.scatterplot(df[args.hyperparameter], df[args.performance_metric]) | |
| if args.logx: | |
| ax.set_xscale("log") | |
| plt.show() |