Spaces:
Build error
Build error
| # Convert Cerebras models to ggml format | |
| # | |
| # ref: https://www.cerebras.net/blog/cerebras-gpt-a-family-of-open-compute-efficient-large-language-models/ | |
| # | |
| import sys | |
| import struct | |
| import json | |
| import torch | |
| import numpy as np | |
| import re | |
| from transformers import AutoModelForCausalLM | |
| # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py | |
| def bytes_to_unicode(): | |
| """ | |
| Returns list of utf-8 byte and a corresponding list of unicode strings. | |
| The reversible bpe codes work on unicode strings. | |
| This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | |
| When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | |
| This is a signficant percentage of your normal, say, 32K bpe vocab. | |
| To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | |
| And avoids mapping to whitespace/control characters the bpe code barfs on. | |
| """ | |
| bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) | |
| cs = bs[:] | |
| n = 0 | |
| for b in range(2**8): | |
| if b not in bs: | |
| bs.append(b) | |
| cs.append(2**8+n) | |
| n += 1 | |
| cs = [chr(n) for n in cs] | |
| return dict(zip(bs, cs)) | |
| if len(sys.argv) < 2: | |
| print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n") | |
| sys.exit(1) | |
| # output in the same directory as the model | |
| dir_model = sys.argv[1] | |
| fname_out = sys.argv[1] + "/ggml-model-f16.bin" | |
| with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f: | |
| encoder = json.load(f) | |
| with open(dir_model + "/config.json", "r", encoding="utf-8") as f: | |
| hparams = json.load(f) | |
| # use 16-bit or 32-bit floats | |
| use_f16 = True | |
| if len(sys.argv) > 2: | |
| use_f16 = False | |
| fname_out = sys.argv[1] + "/ggml-model-f32.bin" | |
| model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True) | |
| #print (model) | |
| list_vars = model.state_dict() | |
| #print (list_vars) | |
| print(hparams) | |
| fout = open(fname_out, "wb") | |
| fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex | |
| fout.write(struct.pack("i", hparams["vocab_size"])) | |
| fout.write(struct.pack("i", hparams["n_positions"])) | |
| fout.write(struct.pack("i", hparams["n_embd"])) | |
| fout.write(struct.pack("i", hparams["n_head"])) | |
| fout.write(struct.pack("i", hparams["n_layer"])) | |
| fout.write(struct.pack("i", use_f16)) | |
| byte_encoder = bytes_to_unicode() | |
| byte_decoder = {v:k for k, v in byte_encoder.items()} | |
| fout.write(struct.pack("i", len(encoder))) | |
| for key in encoder: | |
| text = bytearray([byte_decoder[c] for c in key]) | |
| fout.write(struct.pack("i", len(text))) | |
| fout.write(text) | |
| for name in list_vars.keys(): | |
| data = list_vars[name].squeeze().numpy() | |
| print("Processing variable: " + name + " with shape: ", data.shape) | |
| # rename headers to keep compatibility | |
| if name == "transformer.ln_f.weight": | |
| name = "model/ln_f/g" | |
| elif name == "transformer.ln_f.bias": | |
| name = "model/ln_f/b" | |
| elif name == "transformer.wte.weight": | |
| name = "model/wte" | |
| elif name == "transformer.wpe.weight": | |
| name = "model/wpe" | |
| elif name == "lm_head.weight": | |
| name = "model/lm_head" | |
| elif re.match(r"transformer.h\.\d+\.ln_1\.weight", name): | |
| i = re.findall("\d+", name)[0] | |
| name = f"model/h{i}/ln_1/g" | |
| elif re.match(r"transformer.h\.\d+\.ln_1\.bias", name): | |
| i = re.findall("\d+", name)[0] | |
| name = f"model/h{i}/ln_1/b" | |
| elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.weight", name): | |
| i = re.findall("\d+", name)[0] | |
| name = f"model/h{i}/attn/c_attn/w" | |
| elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.bias", name): | |
| i = re.findall("\d+", name)[0] | |
| name = f"model/h{i}/attn/c_attn/b" | |
| elif re.match(r"transformer.h\.\d+\.attn\.c_proj\.weight", name): | |
| i = re.findall("\d+", name)[0] | |
| name = f"model/h{i}/attn/c_proj/w" | |
| elif re.match(r"transformer.h.\d+.attn.c_proj.bias", name): | |
| i = re.findall("\d+", name)[0] | |
| name = f"model/h{i}/attn/c_proj/b" | |
| elif re.match(r"transformer.h.\d+.ln_2.weight", name): | |
| i = re.findall("\d+", name)[0] | |
| name = f"model/h{i}/ln_2/g" | |
| elif re.match(r"transformer.h.\d+.ln_2.bias", name): | |
| i = re.findall("\d+", name)[0] | |
| name = f"model/h{i}/ln_2/b" | |
| elif re.match(r"transformer.h.\d+.mlp.c_fc.weight", name): | |
| i = re.findall("\d+", name)[0] | |
| name = f"model/h{i}/mlp/c_fc/w" | |
| elif re.match(r"transformer.h.\d+.mlp.c_fc.bias", name): | |
| i = re.findall("\d+", name)[0] | |
| name = f"model/h{i}/mlp/c_fc/b" | |
| elif re.match(r"transformer.h.\d+.mlp.c_proj.weight", name): | |
| i = re.findall("\d+", name)[0] | |
| name = f"model/h{i}/mlp/c_proj/w" | |
| elif re.match(r"transformer.h.\d+.mlp.c_proj.bias", name): | |
| i = re.findall("\d+", name)[0] | |
| name = f"model/h{i}/mlp/c_proj/b" | |
| else: | |
| print("Unrecognized variable name. %s", name) | |
| # we don't need these | |
| if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"): | |
| print(" Skipping variable: " + name) | |
| continue | |
| n_dims = len(data.shape); | |
| # ftype == 0 -> float32, ftype == 1 -> float16 | |
| ftype = 0; | |
| if use_f16: | |
| if (name == "model/wte" or name == "model/lm_head" or name[-2:] == "/g" or name[-2:] == "/w") and n_dims == 2: | |
| print(" Converting to float16") | |
| data = data.astype(np.float16) | |
| ftype = 1 | |
| else: | |
| print(" Converting to float32") | |
| data = data.astype(np.float32) | |
| ftype = 0 | |
| # for efficiency - transpose the projection matrices | |
| # "model/h.*/attn/c_attn/w" | |
| # "model/h.*/attn/c_proj/w" | |
| # "model/h.*/mlp/c_fc/w" | |
| # "model/h.*/mlp/c_proj/w" | |
| if name[-14:] == "/attn/c_attn/w" or \ | |
| name[-14:] == "/attn/c_proj/w" or \ | |
| name[-11:] == "/mlp/c_fc/w" or \ | |
| name[-13:] == "/mlp/c_proj/w": | |
| print(" Transposing") | |
| data = data.transpose() | |
| # header | |
| str = name.encode('utf-8') | |
| fout.write(struct.pack("iii", n_dims, len(str), ftype)) | |
| for i in range(n_dims): | |
| fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) | |
| fout.write(str); | |
| # data | |
| data.tofile(fout) | |
| fout.close() | |
| print("Done. Output file: " + fname_out) | |
| print("") |