File size: 24,705 Bytes
06f9b4f e2bca25 06f9b4f e2bca25 06f9b4f e2bca25 06f9b4f e2bca25 dd2db22 06f9b4f dd2db22 3a71288 dd2db22 3a71288 dd2db22 e2bca25 06f9b4f 048983c e2bca25 048983c e2bca25 ca6cc37 e2bca25 048983c e2bca25 048983c e2bca25 06f9b4f e2bca25 2c1dff6 e2bca25 2c1dff6 dd2db22 e2bca25 2c1dff6 dd2db22 e2bca25 2c1dff6 dd2db22 9c07de8 e2bca25 2c1dff6 dd2db22 e2bca25 2c1dff6 dd2db22 e2bca25 2c1dff6 e2bca25 2c1dff6 e2bca25 2c1dff6 dd2db22 e2bca25 2c1dff6 dd2db22 e2bca25 2c1dff6 e2bca25 2c1dff6 dd2db22 2c1dff6 e2bca25 dd2db22 e2bca25 2c1dff6 e2bca25 3a71288 e2bca25 dd2db22 e2bca25 ebc0a66 e2bca25 3a71288 e2bca25 ebc0a66 e2bca25 ebc0a66 e2bca25 d4263af dd2db22 e2bca25 dd2db22 e2bca25 06f9b4f 2c1dff6 dd2db22 2c1dff6 dd2db22 2c1dff6 dd2db22 2c1dff6 dd2db22 06f9b4f 3a71288 e2bca25 2c1dff6 dd2db22 2c1dff6 e2bca25 3a71288 e2bca25 06f9b4f 2c1dff6 e2bca25 3a71288 e2bca25 dd2db22 ebc0a66 dd2db22 e2bca25 dd2db22 e2bca25 2c1dff6 e2bca25 dd2db22 2c1dff6 e2bca25 2c1dff6 dd2db22 2c1dff6 e2bca25 3a71288 dd2db22 e2bca25 dd2db22 e10d911 e2bca25 dd2db22 ebc0a66 dd2db22 ebc0a66 dd2db22 ebc0a66 e2bca25 dd2db22 e10d911 e2bca25 dd2db22 3a71288 dd2db22 3a71288 dd2db22 3a71288 e2bca25 3a71288 dd2db22 e10d911 e2bca25 3a71288 dd2db22 3a71288 dd2db22 3a71288 dd2db22 3a71288 dd2db22 3a71288 dd2db22 3a71288 dd2db22 3a71288 dd2db22 e2bca25 3a71288 e2bca25 dd2db22 e2bca25 dd2db22 e2bca25 dd2db22 e2bca25 3a71288 dd2db22 3a71288 e2bca25 3a71288 e2bca25 3a71288 e2bca25 dd2db22 e2bca25 dd2db22 3a71288 dd2db22 3a71288 dd2db22 3a71288 dd2db22 e2bca25 dd2db22 e2bca25 2c1dff6 e2bca25 2c1dff6 e2bca25 06f9b4f 2c1dff6 06f9b4f e2bca25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
import gradio as gr
import torch
import torchaudio
import logging
import tempfile
import os
import sys
from pathlib import Path
import numpy as np
from typing import Optional, Tuple
import time
import traceback
# Add hf_AC to path
current_dir = Path(__file__).parent
hf_ac_path = current_dir / "hf_AC"
if hf_ac_path.exists():
sys.path.insert(0, str(hf_ac_path))
# Configuration for HF Space
EXAMPLE_PROMPTS = [
"Crackling fireplace with gentle flames",
"Ocean waves crashing on rocky shore",
"Forest ambience with bird songs",
"Keyboard typing sounds",
"Footsteps on wooden floor",
"Rain on metal roof"
]
USAGE_TIPS = """
### ๐ก Usage Tips
**Basic Settings:**
- **Video Quality**: Use clear, well-lit videos, recommended 1-15 seconds
- **Reference Audio**: Provide clear audio clips as timbre reference
- **CFG Strength**: Between 1-8, higher values follow description more closely
**Advanced Features:**
- **mask_away_clip**: Enable when video content differs significantly from desired audio
- **Fine-grained Control**: Use reference audio for precise timbre and style control
- **Zero-shot Generation**: Generate novel sound combinations without training
**Application Scenarios:**
- Film post-production audio
- Game sound effect creation
- Music composition assistance
- Sound design experimentation
"""
# Check and install missing dependencies
def check_dependencies():
"""Check if all required packages are available"""
missing_packages = []
required_packages = [
'torch', 'torchaudio', 'numpy', 'scipy', 'librosa',
'torchdiffeq', 'einops', 'hydra', 'tensordict', 'av'
]
for package in required_packages:
try:
if package == 'hydra':
__import__('hydra')
elif package == 'av':
__import__('av')
else:
__import__(package)
except ImportError:
missing_packages.append(package)
return missing_packages
# Import hf_AC modules with error handling
try:
# First check basic dependencies
missing_deps = check_dependencies()
if missing_deps:
print(f"Warning: Missing dependencies: {missing_deps}")
print("Some dependencies may be installing in the background...")
from hf_AC.mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video,
setup_eval_logging)
from hf_AC.mmaudio.model.flow_matching import FlowMatching
from hf_AC.mmaudio.model.networks import MMAudio, get_my_mmaudio
from hf_AC.mmaudio.model.utils.features_utils import FeaturesUtils
from hf_AC.inf import Audio
# Setup logging
setup_eval_logging()
log = logging.getLogger()
HF_AC_AVAILABLE = True
print("โ
hf_AC modules loaded successfully!")
except ImportError as e:
print(f"Warning: hf_AC modules not available: {e}")
print("This may be due to missing dependencies. Please wait for installation to complete.")
log = logging.getLogger()
HF_AC_AVAILABLE = False
class AudioFoleyModel:
def __init__(self):
self.device = 'cpu'
if torch.cuda.is_available():
self.device = 'cuda'
elif torch.backends.mps.is_available():
self.device = 'mps'
self.dtype = torch.bfloat16
self.model = None
self.net = None
self.fm = None
self.feature_utils = None
def load_model(self, variant='large_44k', model_path=None):
"""Load the hf_AC model with progress updates"""
global model_loading_status
try:
if not HF_AC_AVAILABLE:
return "โ hf_AC modules not available. Please install the hf_AC package."
if variant not in all_model_cfg:
available_variants = list(all_model_cfg.keys()) if all_model_cfg else []
return f"โ Unknown model variant: {variant}. Available: {available_variants}"
# Step 1: Initialize model config
model_loading_status = "๐ง Initializing model configuration..."
log.info(f"Loading model variant: {variant}")
self.model: ModelConfig = all_model_cfg[variant]
# Step 2: Download model components
model_loading_status = "๐ฅ Downloading model components..."
try:
self.model.download_if_needed()
except Exception as e:
log.warning(f"Could not download model components: {e}")
# Step 3: Download main model weights
model_loading_status = "๐ฅ Downloading main model weights..."
if not hasattr(self.model, 'model_path') or not self.model.model_path or not Path(self.model.model_path).exists():
try:
from huggingface_hub import hf_hub_download
log.info("Downloading main model weights from HuggingFace...")
# Create weights directory
weights_dir = Path("weights")
weights_dir.mkdir(exist_ok=True)
# Download model.pth from HuggingFace
model_file = hf_hub_download(
repo_id="FF2416/AC-Foley",
filename="model.pth",
local_dir=str(weights_dir),
local_dir_use_symlinks=False
)
self.model.model_path = Path(model_file)
log.info(f"โ
Downloaded model weights to {model_file}")
except Exception as e:
log.warning(f"Could not download main model weights: {e}")
log.info("Will proceed with available components only")
# Set custom model path if provided
if model_path and os.path.exists(model_path):
self.model.model_path = Path(model_path)
log.info(f"Using custom model path: {model_path}")
# Step 4: Load neural network
model_loading_status = "๐ง Loading neural network..."
self.net: MMAudio = get_my_mmaudio(self.model.model_name).to(self.device, self.dtype).eval()
# Step 5: Load weights
model_loading_status = "โ๏ธ Loading model weights..."
if hasattr(self.model, 'model_path') and self.model.model_path and Path(self.model.model_path).exists():
try:
weights = torch.load(self.model.model_path, map_location=self.device, weights_only=True)
self.net.load_weights(weights['weights'])
log.info(f'โ
Loaded weights from {self.model.model_path}')
except Exception as e:
log.error(f"Failed to load weights: {e}")
model_loading_status = f"โ Failed to load model weights: {e}"
return model_loading_status
else:
log.warning('โ ๏ธ No model weights found, using default initialization')
model_loading_status = "โ ๏ธ ๆจกๅ็ปไปถๅทฒๅ ่ฝฝ๏ผไฝไธปๆ้ไธๅฏ็จใๆไบๅ่ฝๅฏ่ฝๅ้ใ"
return model_loading_status
# Step 6: Initialize flow matching
model_loading_status = "๐ Initializing flow matching..."
self.fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=25)
# Step 7: Initialize feature utils
model_loading_status = "๐ง Initializing feature utilities..."
try:
self.feature_utils = FeaturesUtils(
tod_vae_ckpt=self.model.vae_path,
synchformer_ckpt=self.model.synchformer_ckpt,
enable_conditions=True,
mode=self.model.mode,
bigvgan_vocoder_ckpt=self.model.bigvgan_16k_path,
need_vae_encoder=True
)
self.feature_utils = self.feature_utils.to(self.device, self.dtype).eval()
except Exception as e:
log.error(f"Failed to initialize feature utils: {e}")
model_loading_status = f"โ Failed to initialize feature utilities: {e}"
return model_loading_status
# Step 8: Complete
model_loading_status = "โ
Model loaded successfully! Ready to generate audio."
return model_loading_status
except Exception as e:
error_msg = f"โ Model loading error: {str(e)}"
log.error(error_msg)
model_loading_status = error_msg
return error_msg
def generate_audio(self, video_file, prompt: str, negative_prompt: str = "",
duration: float = 8.0, cfg_strength: float = 4.5,
seed: int = 42, reference_audio: str = None, mask_away_clip: bool = False) -> Tuple[Optional[str], str]:
"""Generate audio from video and text prompt"""
try:
# Validation checks
if not HF_AC_AVAILABLE:
return None, "โ hf_AC modules not available."
if self.net is None or self.feature_utils is None:
return None, "โ Model not loaded. Please load the model first."
if video_file is None:
return None, "โ Please upload a video file."
log.info(f'๐ฌ Processing video: {video_file}')
if prompt.strip():
log.info(f'๐ Prompt: "{prompt}"')
else:
log.info('๐ No prompt provided - will generate based on video content')
if reference_audio:
log.info(f'๐ต Reference audio: {reference_audio}')
# Load and process reference audio if provided
reference_audio_tensor = None
if reference_audio and os.path.exists(reference_audio):
try:
# Use the same Audio class from hf_AC
SAMPLE_RATE = 44100
audio_processor = Audio([reference_audio], SAMPLE_RATE)
audio_list = audio_processor.load_audio()
if audio_list:
reference_audio_tensor = audio_list[0]
log.info(f'๐ต Reference audio loaded: {reference_audio_tensor.shape}')
except Exception as e:
log.warning(f"Failed to load reference audio: {e}")
reference_audio_tensor = None
# Load and process video
try:
video_path = Path(video_file)
if not video_path.exists():
return None, f"โ Video file not found: {video_file}"
video_info = load_video(video_path, duration)
clip_frames = video_info.clip_frames
sync_frames = video_info.sync_frames
duration_sec = video_info.duration_sec
log.info(f'๐น Video loaded: {duration_sec:.2f}s duration')
except Exception as e:
return None, f"โ Failed to load video: {str(e)}"
# Prepare frames
if mask_away_clip:
clip_frames = None # Mask away clip frames when video and audio don't match well
log.info("๐ญ Using mask_away_clip: ignoring visual features")
else:
clip_frames = clip_frames.unsqueeze(0) if clip_frames is not None else None
sync_frames = sync_frames.unsqueeze(0)
# Update model sequence configuration
try:
self.model.seq_cfg.duration = duration_sec
# Set audio sample count based on reference audio or default
if reference_audio_tensor is not None:
self.model.seq_cfg.audio_num_sample = reference_audio_tensor.shape[0]
else:
self.model.seq_cfg.audio_num_sample = 89088 # Default for 44kHz
self.net.update_seq_lengths(
self.model.seq_cfg.latent_seq_len,
self.model.seq_cfg.clip_seq_len,
self.model.seq_cfg.sync_seq_len,
self.model.seq_cfg.audio_seq_len
)
except Exception as e:
return None, f"โ Failed to configure model: {str(e)}"
# Generate audio
try:
log.info('๐ต Generating audio...')
start_time = time.time()
with torch.inference_mode():
audios = generate(
clip_frames,
sync_frames,
[prompt],
reference_audio_tensor, # Use reference audio if provided
negative_text=[negative_prompt] if negative_prompt.strip() else None,
feature_utils=self.feature_utils,
net=self.net,
fm=self.fm,
rng=torch.Generator(device=self.device).manual_seed(seed),
cfg_strength=cfg_strength
)
generation_time = time.time() - start_time
log.info(f'โฑ๏ธ Generation completed in {generation_time:.2f}s')
except Exception as e:
return None, f"โ Audio generation failed: {str(e)}"
# Save generated audio
try:
audio = audios.float().cpu()[0]
# Create output filename with timestamp
timestamp = int(time.time())
output_filename = f"generated_audio_{timestamp}.wav"
permanent_path = f"/tmp/{output_filename}"
# Save audio file with fallback methods
try:
# Try with torchaudio first
torchaudio.save(permanent_path, audio, self.model.seq_cfg.sampling_rate)
except Exception as e:
log.warning(f"torchaudio.save failed: {e}, trying alternative method...")
try:
# Fallback: use soundfile if available
import soundfile as sf
sf.write(permanent_path, audio.numpy().T, self.model.seq_cfg.sampling_rate)
except ImportError:
try:
# Fallback: use scipy.io.wavfile
from scipy.io.wavfile import write
# Convert to int16 for wav format
audio_int16 = (audio * 32767).clamp(-32768, 32767).to(torch.int16)
write(permanent_path, self.model.seq_cfg.sampling_rate, audio_int16.numpy().T)
except Exception as e2:
return None, f"โ Audio saving failed: {str(e2)}"
# Verify file was created
if not os.path.exists(permanent_path):
return None, "โ Failed to save audio file"
file_size = os.path.getsize(permanent_path) / 1024 # KB
success_msg = f"โ
Audio generated successfully!\n"
success_msg += f"๐ Duration: {duration_sec:.2f}s | "
success_msg += f"Size: {file_size:.1f}KB | "
success_msg += f"Generation time: {generation_time:.2f}s"
return permanent_path, success_msg
except Exception as e:
return None, f"โ Failed to save audio: {str(e)}"
except Exception as e:
error_msg = f"โ Unexpected error: {str(e)}\n{traceback.format_exc()}"
log.error(error_msg)
return None, error_msg
# Global model instance - initialized once
audio_model = None
model_loading_status = "Not initialized"
def initialize_model():
"""Initialize model once at startup"""
global audio_model, model_loading_status
if audio_model is None:
try:
model_loading_status = "Initializing model..."
audio_model = AudioFoleyModel()
load_result = audio_model.load_model()
model_loading_status = load_result
return load_result
except Exception as e:
model_loading_status = f"โ Model initialization failed: {str(e)}"
return model_loading_status
else:
return "โ
Model already loaded"
def generate_audio_interface(video_file, audio_file, prompt, duration, cfg_strength, mask_away_clip):
"""Interface function for generating audio"""
global audio_model, model_loading_status
# Check if model is loaded
if audio_model is None or audio_model.net is None:
return None, "โ Model not loaded. Please wait for initialization to complete or refresh the page."
# Use fixed seed for consistency in HF Space
seed = 42
negative_prompt = "" # Simplified interface
audio_path, message = audio_model.generate_audio(
video_file, prompt, negative_prompt, duration, cfg_strength, seed, audio_file, mask_away_clip
)
return audio_path, message
def get_model_status():
"""Get current model loading status"""
global model_loading_status
return model_loading_status
# Create Gradio interface
with gr.Blocks(title="hf_AC Audio Foley Generator", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ๐ต AC-Foley: Reference-Audio-Guided Video-to-Audio Synthesis
## ๐ About
AC-Foley is a reference-audio-guided video-to-audio synthesis model that enables precise fine-grained sound synthesis. Unlike traditional text-dependent methods, AC-Foley directly leverages reference audio to achieve precise control over generated sounds, addressing the ambiguity of textual descriptions in micro-acoustic features.
## โจ Key Features
- **Fine-grained Sound Synthesis**: Generate footsteps with distinct timbres (wood, marble, gravel, etc.)
- **Timbre Transfer**: Transform violin melodies into bright, piercing suona tones
- **Zero-shot Generation**: Create unique sound effects without specialized training
- **Visual-Audio Alignment**: Automatically generate matching audio from video content
*Based on paper: [AC-Foley: Reference-Audio-Guided Video-to-Audio Synthesis with Acoustic Transfer](https://openreview.net/forum?id=URPXhnWdBF)*
""")
# Model status display - will be updated automatically
model_status = gr.Textbox(
label="Model Status",
value=model_loading_status,
interactive=False
)
# Add a refresh button for status
refresh_status_btn = gr.Button("๐ Refresh Status", size="sm")
refresh_status_btn.click(
fn=get_model_status,
outputs=model_status
)
with gr.Row():
with gr.Column(scale=2):
# Required inputs
gr.Markdown("### ๐น Required Input")
video_input = gr.Video(
label="Video File - Upload video for audio generation",
format="mp4"
)
# Optional inputs
gr.Markdown("### ๐๏ธ Optional Inputs")
audio_input = gr.Audio(
label="Reference Audio - Provide timbre, style, rhythm reference (fine-grained control)",
type="filepath",
sources=["upload"],
format="wav"
)
prompt_input = gr.Textbox(
label="Text Prompt - Describe desired audio type (leave empty for auto-generation from video)",
placeholder="e.g., 'footsteps', 'metal clang', 'bird chirping'",
lines=2
)
# Advanced options
with gr.Accordion("๐ง Advanced Options", open=False):
with gr.Row():
duration_slider = gr.Slider(
minimum=1.0,
maximum=15.0,
value=8.0,
step=0.5,
label="Duration (seconds)"
)
cfg_strength_slider = gr.Slider(
minimum=1.0,
maximum=8.0,
value=4.5,
step=0.1,
label="CFG Strength"
)
mask_away_clip = gr.Checkbox(
label="Ignore Visual Features (mask_away_clip) - Enable when video and reference audio differ significantly",
value=False
)
with gr.Column(scale=1):
# Usage guide
gr.Markdown("### ๐ Usage Guide")
gr.Markdown("""
**Four Generation Modes:**
1๏ธโฃ **Video Only**: Upload video only
- Auto-generate audio from visual content
2๏ธโฃ **Video + Reference Audio**: Upload video + audio
- Use reference audio's timbre and style
- Achieve fine-grained timbre control
3๏ธโฃ **Video + Text**: Upload video + text
- Generate specified audio type from text description
4๏ธโฃ **Complete Mode**: Video + Audio + Text
- Most precise control method
- Combine visual, timbral, and semantic guidance
""")
# Example prompts
gr.Markdown("### ๐ฏ Example Prompts")
example_buttons = []
for prompt in EXAMPLE_PROMPTS[:4]:
btn = gr.Button(prompt, size="sm")
example_buttons.append(btn)
btn.click(
fn=lambda p=prompt: p,
outputs=prompt_input
)
# Generate button
generate_btn = gr.Button("๐ต Generate Audio", variant="primary", size="lg")
# Output area
gr.Markdown("### ๐ง Generated Results")
audio_output = gr.Audio(
label="Generated Audio",
type="filepath",
format="wav",
autoplay=False
)
generation_status = gr.Textbox(
label="Generation Status",
interactive=False,
lines=2
)
# ็ปๅฎ็ๆไบไปถ
generate_btn.click(
fn=generate_audio_interface,
inputs=[
video_input, audio_input, prompt_input,
duration_slider, cfg_strength_slider, mask_away_clip
],
outputs=[audio_output, generation_status]
)
with gr.Accordion("๐ก Detailed Information", open=False):
gr.Markdown(USAGE_TIPS)
gr.Markdown("""
### ๐ฌ Application Examples
**Fine-grained Sound Synthesis:**
- "Footsteps on wooden floor" + reference audio โ Specific timbre footsteps
- "Metal collision" + different reference audio โ Iron vs. copper distinction
**Timbre Transfer:**
- Piano melody video + violin reference audio โ Violin playing same melody
- Human humming + instrument reference โ Instrumental version
**Creative Sound Effects:**
- Sci-fi scene video + real sound reference โ Unique sci-fi effects
- Animation video + real sound effects โ Cartoon-reality hybrid effects
### ๐ Technical Details
- Model based on diffusion models and audio conditioning mechanisms
- Supports 44.1kHz high-quality audio generation
- Achieves visual-audio-text multimodal alignment
""")
# Auto-initialize model on startup
demo.load(
fn=initialize_model,
outputs=[model_status]
)
# Initialize model when module is imported (for HF Space)
if HF_AC_AVAILABLE:
print("๐ Starting model initialization...")
initialize_model()
print(f"๐ Model status: {model_loading_status}")
if __name__ == "__main__":
# HF Space will handle the server configuration
demo.launch() |