Upload 2 files
Browse files- spam_ham_dataset.csv +0 -0
- untitled3.py +419 -0
spam_ham_dataset.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
untitled3.py
ADDED
|
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Untitled3.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1BTaF9lue6oXAqEx5zFRq1cnWWQ9YKCiQ
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import numpy as np
|
| 12 |
+
import torch
|
| 13 |
+
from transformers import BertTokenizer
|
| 14 |
+
import seaborn as sns
|
| 15 |
+
import matplotlib.pyplot as plt
|
| 16 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# Load dataset
|
| 20 |
+
file_path = 'spam_ham_dataset.csv'
|
| 21 |
+
df = pd.read_csv(file_path)
|
| 22 |
+
df.head()
|
| 23 |
+
|
| 24 |
+
# Preprocessing
|
| 25 |
+
#.str.replace(r'[^\w\s]', '', regex=True) removes everthing except letters, numbers, and spaces
|
| 26 |
+
# df['text'].str.lower() converts everything in the text column to lower case only
|
| 27 |
+
df['text'] = df['text'].str.lower().str.replace(r'[^\w\s]', '', regex=True)
|
| 28 |
+
df['text'].head()
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
sns.countplot(x=df['label'])
|
| 32 |
+
plt.title("Spam vs Ham Distribution")
|
| 33 |
+
plt.show()
|
| 34 |
+
|
| 35 |
+
# Calculate text length metrics
|
| 36 |
+
df['char_count'] = df['text'].apply(len)
|
| 37 |
+
df['word_count'] = df['text'].apply(lambda x: len(x.split()))
|
| 38 |
+
# Plot word count distribution for spam and ham
|
| 39 |
+
plt.figure(figsize=(12, 5))
|
| 40 |
+
sns.histplot(data=df, x='word_count', hue='label', bins=30, kde=True)
|
| 41 |
+
plt.xlim(0, 1000)
|
| 42 |
+
plt.title("Word Count Distribution by Label")
|
| 43 |
+
plt.xlabel("Number of Words")
|
| 44 |
+
plt.ylabel("Frequency")
|
| 45 |
+
plt.show()
|
| 46 |
+
|
| 47 |
+
def get_top_words(corpus, n=None):
|
| 48 |
+
vec = CountVectorizer(stop_words='english').fit(corpus)
|
| 49 |
+
bag_of_words = vec.transform(corpus)
|
| 50 |
+
sum_words = bag_of_words.sum(axis=0)
|
| 51 |
+
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
|
| 52 |
+
words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True)
|
| 53 |
+
return words_freq[:n]
|
| 54 |
+
|
| 55 |
+
# Top 10 words for spam
|
| 56 |
+
top_spam_words = get_top_words(df[df['label'] == "spam"]['text'], n=10)
|
| 57 |
+
print("Top spam words:", top_spam_words)
|
| 58 |
+
|
| 59 |
+
# Top 10 words for ham
|
| 60 |
+
top_ham_words = get_top_words(df[df['label'] == "ham"]['text'], n=10)
|
| 61 |
+
print("Top ham words:", top_ham_words)
|
| 62 |
+
|
| 63 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 64 |
+
from sklearn.naive_bayes import MultinomialNB
|
| 65 |
+
from sklearn.metrics import classification_report
|
| 66 |
+
|
| 67 |
+
# TF-IDF Vectorization
|
| 68 |
+
vectorizer = TfidfVectorizer()
|
| 69 |
+
X = vectorizer.fit_transform(df['text'])
|
| 70 |
+
y = df['label_num']
|
| 71 |
+
|
| 72 |
+
# Train-Test Split
|
| 73 |
+
from sklearn.model_selection import train_test_split
|
| 74 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 75 |
+
|
| 76 |
+
# Train Naïve Bayes Model
|
| 77 |
+
nb_model = MultinomialNB()
|
| 78 |
+
nb_model.fit(X_train, y_train)
|
| 79 |
+
|
| 80 |
+
# Predictions
|
| 81 |
+
y_pred = nb_model.predict(X_test)
|
| 82 |
+
print(classification_report(y_test, y_pred))
|
| 83 |
+
|
| 84 |
+
import pandas as pd
|
| 85 |
+
import torch
|
| 86 |
+
import torch.nn as nn
|
| 87 |
+
import torch.optim as optim
|
| 88 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
| 89 |
+
from torch.utils.data import Dataset, DataLoader
|
| 90 |
+
|
| 91 |
+
# Load dataset
|
| 92 |
+
file_path = 'spam_ham_dataset.csv'
|
| 93 |
+
df = pd.read_csv(file_path)
|
| 94 |
+
|
| 95 |
+
# Convert label column to numeric (0 for ham, 1 for spam)
|
| 96 |
+
df['label_num'] = df['label'].astype('category').cat.codes
|
| 97 |
+
|
| 98 |
+
# Load tokenizer
|
| 99 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
| 100 |
+
|
| 101 |
+
# Tokenize dataset
|
| 102 |
+
encodings = tokenizer(df['text'].tolist(), padding=True, truncation=True, max_length=128, return_tensors="pt")
|
| 103 |
+
labels = torch.tensor(df['label_num'].values)
|
| 104 |
+
|
| 105 |
+
# Custom Dataset
|
| 106 |
+
class SpamDataset(Dataset):
|
| 107 |
+
def __init__(self, encodings, labels):
|
| 108 |
+
self.encodings = encodings
|
| 109 |
+
self.labels = labels
|
| 110 |
+
|
| 111 |
+
def __len__(self):
|
| 112 |
+
return len(self.labels)
|
| 113 |
+
|
| 114 |
+
def __getitem__(self, idx):
|
| 115 |
+
item = {key: val[idx] for key, val in self.encodings.items()} # Keep as PyTorch tensors
|
| 116 |
+
item['labels'] = torch.tensor(self.labels[idx], dtype=torch.long) # Ensure labels are `long`
|
| 117 |
+
return item
|
| 118 |
+
|
| 119 |
+
# Create dataset
|
| 120 |
+
dataset = SpamDataset(encodings, labels)
|
| 121 |
+
|
| 122 |
+
# Split dataset (80% train, 20% validation)
|
| 123 |
+
train_size = int(0.8 * len(dataset))
|
| 124 |
+
val_size = len(dataset) - train_size
|
| 125 |
+
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
|
| 126 |
+
|
| 127 |
+
# DataLoader Function (Fix Collate)
|
| 128 |
+
def collate_fn(batch):
|
| 129 |
+
keys = batch[0].keys()
|
| 130 |
+
collated = {key: torch.stack([b[key] for b in batch]) for key in keys}
|
| 131 |
+
return collated
|
| 132 |
+
|
| 133 |
+
# Create DataLoader
|
| 134 |
+
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, collate_fn=collate_fn)
|
| 135 |
+
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False, collate_fn=collate_fn)
|
| 136 |
+
|
| 137 |
+
# Load BERT model
|
| 138 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 139 |
+
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
|
| 140 |
+
model.to(device)
|
| 141 |
+
|
| 142 |
+
# Define optimizer and loss function
|
| 143 |
+
optimizer = optim.AdamW(model.parameters(), lr=5e-5)
|
| 144 |
+
loss_fn = nn.CrossEntropyLoss()
|
| 145 |
+
|
| 146 |
+
# Training Loop
|
| 147 |
+
EPOCHS = 10
|
| 148 |
+
|
| 149 |
+
for epoch in range(EPOCHS):
|
| 150 |
+
model.train()
|
| 151 |
+
total_loss = 0
|
| 152 |
+
|
| 153 |
+
for batch in train_loader:
|
| 154 |
+
optimizer.zero_grad()
|
| 155 |
+
|
| 156 |
+
# Move batch to device
|
| 157 |
+
inputs = {key: val.to(device) for key, val in batch.items()}
|
| 158 |
+
labels = inputs.pop("labels").to(device) # Move labels to device
|
| 159 |
+
|
| 160 |
+
# Forward pass
|
| 161 |
+
outputs = model(**inputs)
|
| 162 |
+
loss = loss_fn(outputs.logits, labels)
|
| 163 |
+
|
| 164 |
+
# Backward pass
|
| 165 |
+
loss.backward()
|
| 166 |
+
optimizer.step()
|
| 167 |
+
|
| 168 |
+
total_loss += loss.item()
|
| 169 |
+
|
| 170 |
+
avg_loss = total_loss / len(train_loader)
|
| 171 |
+
print(f"Epoch {epoch+1}, Loss: {avg_loss:.4f}")
|
| 172 |
+
|
| 173 |
+
print("Training complete!")
|
| 174 |
+
|
| 175 |
+
from sklearn.metrics import classification_report
|
| 176 |
+
from transformers import BertTokenizer
|
| 177 |
+
import torch
|
| 178 |
+
import torch.nn.functional as F
|
| 179 |
+
|
| 180 |
+
# Classification function
|
| 181 |
+
def classify_email(email_text):
|
| 182 |
+
model.eval() # Set model to evaluation mode
|
| 183 |
+
|
| 184 |
+
with torch.no_grad():
|
| 185 |
+
# Tokenize and convert input text to tensor
|
| 186 |
+
inputs = tokenizer(email_text, padding=True, truncation=True, max_length=256, return_tensors="pt")
|
| 187 |
+
|
| 188 |
+
# Move inputs to the appropriate device
|
| 189 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
| 190 |
+
|
| 191 |
+
# Get model predictions
|
| 192 |
+
outputs = model(**inputs)
|
| 193 |
+
logits = outputs.logits
|
| 194 |
+
|
| 195 |
+
# Convert logits to predicted class
|
| 196 |
+
predictions = torch.argmax(logits, dim=1)
|
| 197 |
+
|
| 198 |
+
# Convert logits to probabilities using softmax
|
| 199 |
+
probs = F.softmax(logits, dim=1)
|
| 200 |
+
confidence = torch.max(probs).item() * 100 # Convert to percentage
|
| 201 |
+
|
| 202 |
+
# Convert numeric prediction to label
|
| 203 |
+
result = "Spam" if predictions.item() == 1 else "Ham"
|
| 204 |
+
|
| 205 |
+
return {
|
| 206 |
+
"result": result,
|
| 207 |
+
"confidence": f"{confidence:.2f}%",
|
| 208 |
+
}
|
| 209 |
+
|
| 210 |
+
# Evaluation function with detailed classification report
|
| 211 |
+
def evaluate_model_with_report(val_loader):
|
| 212 |
+
model.eval() # Set model to evaluation mode
|
| 213 |
+
y_true = []
|
| 214 |
+
y_pred = []
|
| 215 |
+
correct = 0
|
| 216 |
+
total = 0
|
| 217 |
+
|
| 218 |
+
with torch.no_grad():
|
| 219 |
+
for batch in val_loader:
|
| 220 |
+
inputs = {key: val.to(device) for key, val in batch.items()}
|
| 221 |
+
labels = inputs.pop("labels").to(device)
|
| 222 |
+
|
| 223 |
+
outputs = model(**inputs)
|
| 224 |
+
predictions = torch.argmax(outputs.logits, dim=1)
|
| 225 |
+
|
| 226 |
+
# Collect labels and predictions
|
| 227 |
+
y_true.extend(labels.cpu().numpy())
|
| 228 |
+
y_pred.extend(predictions.cpu().numpy())
|
| 229 |
+
|
| 230 |
+
# Calculate accuracy
|
| 231 |
+
correct += (predictions == labels).sum().item()
|
| 232 |
+
total += labels.size(0)
|
| 233 |
+
|
| 234 |
+
# Calculate accuracy
|
| 235 |
+
accuracy = correct / total if total > 0 else 0
|
| 236 |
+
print(f"Validation Accuracy: {accuracy:.4f}")
|
| 237 |
+
|
| 238 |
+
# Print classification report
|
| 239 |
+
print("\nClassification Report:")
|
| 240 |
+
print(classification_report(y_true, y_pred, target_names=["Ham", "Spam"]))
|
| 241 |
+
|
| 242 |
+
return accuracy
|
| 243 |
+
|
| 244 |
+
# Run evaluation with classification report
|
| 245 |
+
accuracy = evaluate_model_with_report(val_loader)
|
| 246 |
+
print(f"Model Validation Accuracy: {accuracy:.4f}")
|
| 247 |
+
|
| 248 |
+
## App Deployment Functions
|
| 249 |
+
|
| 250 |
+
def generate_performance_metrics():
|
| 251 |
+
y_pred = model.predict(X_test)
|
| 252 |
+
accuracy = evaluate_model_with_report(val_loader)
|
| 253 |
+
report = classification_report(y_true, y_pred, target_names=["Ham", "Spam"])
|
| 254 |
+
return {
|
| 255 |
+
"accuracy": f"{accuracy:.2%}",
|
| 256 |
+
"precision": f"{report['1']['precision']:.2%}",
|
| 257 |
+
"recall": f"{report['1']['recall']:.2%}",
|
| 258 |
+
"f1_score": f"{report['1']['f1-score']:.2%}"
|
| 259 |
+
}
|
| 260 |
+
|
| 261 |
+
def email_analysis_pipeline(email_text):
|
| 262 |
+
results = classify_email(email_text)
|
| 263 |
+
accuracy = evaluate_model_with_report(val_loader)
|
| 264 |
+
return {
|
| 265 |
+
results["result"],
|
| 266 |
+
results["confidence"],
|
| 267 |
+
accuracy
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
## Gradio Interface
|
| 271 |
+
|
| 272 |
+
!pip install gradio
|
| 273 |
+
import gradio as gr
|
| 274 |
+
|
| 275 |
+
# Create Gradio Interface
|
| 276 |
+
def create_interface():
|
| 277 |
+
performance_metrics = generate_performance_metrics()
|
| 278 |
+
|
| 279 |
+
# Introduction - Title + Brief Description
|
| 280 |
+
with gr.Blocks(css=custom_css) as interface:
|
| 281 |
+
gr.Markdown("Spam Email Classification")
|
| 282 |
+
gr.Markdown(
|
| 283 |
+
"""
|
| 284 |
+
Brief description of the project here
|
| 285 |
+
|
| 286 |
+
"""
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
# Email Text Input
|
| 290 |
+
with gr.Row():
|
| 291 |
+
email_input = gr.Textbox(
|
| 292 |
+
lines=8, placeholder="Type or paste your email content here...", label="Email Content"
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
# Email Text Results and Analysis
|
| 296 |
+
with gr.Row():
|
| 297 |
+
result_output = gr.HTML(label="Classification Result") # label = [function that prints classification result]
|
| 298 |
+
confidence_output = gr.Textbox(label="Confidence Score", interactive=False)
|
| 299 |
+
accuracy_output = gr.Textbox(label="Accuracy", interactive=False)
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
analyze_button = gr.Button("Analyze Email 🕵️♂️")
|
| 303 |
+
|
| 304 |
+
analyze_button.click(
|
| 305 |
+
fn=email_analysis_pipeline,
|
| 306 |
+
inputs=email_input,
|
| 307 |
+
outputs=[result_output, confidence_output, accuracy_output]
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
# Analysis
|
| 311 |
+
gr.Markdown("## 📊 Model Performance Analytics")
|
| 312 |
+
with gr.Row():
|
| 313 |
+
with gr.Column():
|
| 314 |
+
gr.Textbox(value=performance_metrics["accuracy"], label="Accuracy", interactive=False, elem_classes=["metric"])
|
| 315 |
+
gr.Textbox(value=performance_metrics["precision"], label="Precision", interactive=False, elem_classes=["metric"])
|
| 316 |
+
gr.Textbox(value=performance_metrics["recall"], label="Recall", interactive=False, elem_classes=["metric"])
|
| 317 |
+
gr.Textbox(value=performance_metrics["f1_score"], label="F1 Score", interactive=False, elem_classes=["metric"])
|
| 318 |
+
with gr.Column():
|
| 319 |
+
gr.Markdown("### Confusion Matrix")
|
| 320 |
+
gr.HTML(f"<img src='data:image/png;base64,{performance_metrics['confusion_matrix_plot']}' style='max-width: 100%; height: auto;' />")
|
| 321 |
+
|
| 322 |
+
gr.Markdown("## 📘 Glossary and Explanation of Labels")
|
| 323 |
+
gr.Markdown(
|
| 324 |
+
"""
|
| 325 |
+
### Labels:
|
| 326 |
+
- **Spam:** Unwanted or harmful emails flagged by the system.
|
| 327 |
+
- **Ham:** Legitimate, safe emails.
|
| 328 |
+
|
| 329 |
+
### Metrics:
|
| 330 |
+
- **Accuracy:** The percentage of correct classifications.
|
| 331 |
+
- **Precision:** Out of predicted Spam, how many are actually Spam.
|
| 332 |
+
- **Recall:** Out of all actual Spam emails, how many are predicted as Spam.
|
| 333 |
+
- **F1 Score:** Harmonic mean of Precision and Recall.
|
| 334 |
+
"""
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
return interface
|
| 338 |
+
|
| 339 |
+
# Launch the interface
|
| 340 |
+
interface = create_interface()
|
| 341 |
+
interface.launch(share=True)
|
| 342 |
+
|
| 343 |
+
## CSS
|
| 344 |
+
|
| 345 |
+
# Updated CSS
|
| 346 |
+
custom_css = """
|
| 347 |
+
body {
|
| 348 |
+
font-family: 'Arial', sans-serif;
|
| 349 |
+
background-image: url('https://cdn.pixabay.com/photo/2016/11/19/15/26/email-1839873_1280.jpg');
|
| 350 |
+
background-size: cover;
|
| 351 |
+
background-position: center;
|
| 352 |
+
background-attachment: fixed;
|
| 353 |
+
color: #333;
|
| 354 |
+
}
|
| 355 |
+
h1, h2, h3 {
|
| 356 |
+
text-align: center;
|
| 357 |
+
color: #ffffff;
|
| 358 |
+
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.7);
|
| 359 |
+
}
|
| 360 |
+
.gradio-container {
|
| 361 |
+
background-color: rgba(255, 255, 255, 0.8);
|
| 362 |
+
border-radius: 10px;
|
| 363 |
+
padding: 20px;
|
| 364 |
+
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.3);
|
| 365 |
+
}
|
| 366 |
+
button {
|
| 367 |
+
background-color: #1e90ff;
|
| 368 |
+
color: white;
|
| 369 |
+
padding: 10px 20px;
|
| 370 |
+
border: none;
|
| 371 |
+
border-radius: 5px;
|
| 372 |
+
cursor: pointer;
|
| 373 |
+
font-size: 1.2em;
|
| 374 |
+
transition: transform 0.2s, background-color 0.3s;
|
| 375 |
+
}
|
| 376 |
+
button:hover {
|
| 377 |
+
background-color: #1c86ee;
|
| 378 |
+
transform: scale(1.05);
|
| 379 |
+
}
|
| 380 |
+
.highlight {
|
| 381 |
+
background-color: #ffeb3b;
|
| 382 |
+
font-weight: bold;
|
| 383 |
+
padding: 0 3px;
|
| 384 |
+
border-radius: 3px;
|
| 385 |
+
}
|
| 386 |
+
.metric {
|
| 387 |
+
font-size: 1.2em;
|
| 388 |
+
text-align: center;
|
| 389 |
+
color: #ffffff;
|
| 390 |
+
background-color: #4CAF50;
|
| 391 |
+
border-radius: 8px;
|
| 392 |
+
padding: 10px;
|
| 393 |
+
margin: 10px 0;
|
| 394 |
+
box-shadow: 2px 2px 5px rgba(0, 0, 0, 0.2);
|
| 395 |
+
}
|
| 396 |
+
"""
|
| 397 |
+
|
| 398 |
+
## Original
|
| 399 |
+
|
| 400 |
+
from sklearn.metrics import classification_report
|
| 401 |
+
|
| 402 |
+
# Collect predictions and true labels
|
| 403 |
+
y_true = []
|
| 404 |
+
y_pred = []
|
| 405 |
+
|
| 406 |
+
model.eval()
|
| 407 |
+
with torch.no_grad():
|
| 408 |
+
for batch in val_loader:
|
| 409 |
+
inputs = {key: val.to(device) for key, val in batch.items()}
|
| 410 |
+
labels = inputs.pop("labels").to(device)
|
| 411 |
+
|
| 412 |
+
outputs = model(**inputs)
|
| 413 |
+
predictions = torch.argmax(outputs.logits, dim=1)
|
| 414 |
+
|
| 415 |
+
y_true.extend(labels.cpu().numpy())
|
| 416 |
+
y_pred.extend(predictions.cpu().numpy())
|
| 417 |
+
|
| 418 |
+
# Print detailed classification report
|
| 419 |
+
print(classification_report(y_true, y_pred, target_names=["Ham", "Spam"]))
|