Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import pipeline | |
| def main(): | |
| st.title("Working AI Models") | |
| st.write("Based on your successful test") | |
| # Используем ту же модель, что работала в тесте | |
| text = st.text_area("Text to analyze:", "I love this product!") | |
| if st.button("Get Sentiment"): | |
| try: | |
| classifier = pipeline("sentiment-analysis") | |
| result = classifier(text)[0] | |
| st.write(f"**Label:** {result['label']}") | |
| st.write(f"**Score:** {result['score']:.4f}") | |
| st.balloons() | |
| except Exception as e: | |
| st.error(f"Error: {e}") | |
| if __name__ == "__main__": | |
| main() |