File size: 5,891 Bytes
09b5534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
"""
Docker Model Runner - FastAPI application with named endpoints
"""
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Optional, List
import torch
from transformers import pipeline, AutoTokenizer, AutoModel
import os
from datetime import datetime

app = FastAPI(
    title="Docker Model Runner",
    description="HuggingFace Space with named endpoints for model inference",
    version="1.0.0"
)

# Model configurations
MODEL_NAME = os.getenv("MODEL_NAME", "distilbert-base-uncased")
GENERATOR_MODEL = os.getenv("GENERATOR_MODEL", "gpt2")

# Lazy-loaded pipelines
_classifier = None
_generator = None
_embedder = None


def get_classifier():
    global _classifier
    if _classifier is None:
        _classifier = pipeline("text-classification", model=MODEL_NAME)
    return _classifier


def get_generator():
    global _generator
    if _generator is None:
        _generator = pipeline("text-generation", model=GENERATOR_MODEL)
    return _generator


def get_embedder():
    global _embedder
    if _embedder is None:
        _embedder = {
            "tokenizer": AutoTokenizer.from_pretrained(MODEL_NAME),
            "model": AutoModel.from_pretrained(MODEL_NAME)
        }
    return _embedder


# Request/Response Models
class PredictRequest(BaseModel):
    text: str
    top_k: Optional[int] = 1


class PredictResponse(BaseModel):
    predictions: List[dict]
    model: str
    latency_ms: float


class GenerateRequest(BaseModel):
    prompt: str
    max_length: Optional[int] = 50
    num_return_sequences: Optional[int] = 1
    temperature: Optional[float] = 1.0


class GenerateResponse(BaseModel):
    generated_text: List[str]
    model: str
    latency_ms: float


class EmbedRequest(BaseModel):
    texts: List[str]


class EmbedResponse(BaseModel):
    embeddings: List[List[float]]
    model: str
    dimensions: int
    latency_ms: float


class HealthResponse(BaseModel):
    status: str
    timestamp: str
    gpu_available: bool


class InfoResponse(BaseModel):
    name: str
    version: str
    models: dict
    endpoints: List[str]


# Named Endpoints
@app.get("/")
async def root():
    """Welcome endpoint"""
    return {
        "message": "Docker Model Runner API",
        "docs": "/docs",
        "endpoints": ["/health", "/info", "/predict", "/generate", "/embed"]
    }


@app.get("/health", response_model=HealthResponse)
async def health():
    """Health check endpoint"""
    return HealthResponse(
        status="healthy",
        timestamp=datetime.utcnow().isoformat(),
        gpu_available=torch.cuda.is_available()
    )


@app.get("/info", response_model=InfoResponse)
async def info():
    """Model and API information"""
    return InfoResponse(
        name="Docker Model Runner",
        version="1.0.0",
        models={
            "classifier": MODEL_NAME,
            "generator": GENERATOR_MODEL,
            "embedder": MODEL_NAME
        },
        endpoints=["/", "/health", "/info", "/predict", "/generate", "/embed"]
    )


@app.post("/predict", response_model=PredictResponse)
async def predict(request: PredictRequest):
    """
    Run text classification prediction

    - **text**: Input text to classify
    - **top_k**: Number of top predictions to return
    """
    try:
        start_time = datetime.now()
        classifier = get_classifier()
        results = classifier(request.text, top_k=request.top_k)
        latency = (datetime.now() - start_time).total_seconds() * 1000

        return PredictResponse(
            predictions=results,
            model=MODEL_NAME,
            latency_ms=round(latency, 2)
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.post("/generate", response_model=GenerateResponse)
async def generate(request: GenerateRequest):
    """
    Generate text from a prompt

    - **prompt**: Input prompt for generation
    - **max_length**: Maximum length of generated text
    - **num_return_sequences**: Number of sequences to generate
    - **temperature**: Sampling temperature
    """
    try:
        start_time = datetime.now()
        generator = get_generator()
        results = generator(
            request.prompt,
            max_length=request.max_length,
            num_return_sequences=request.num_return_sequences,
            temperature=request.temperature,
            do_sample=True
        )
        latency = (datetime.now() - start_time).total_seconds() * 1000

        generated_texts = [r["generated_text"] for r in results]

        return GenerateResponse(
            generated_text=generated_texts,
            model=GENERATOR_MODEL,
            latency_ms=round(latency, 2)
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.post("/embed", response_model=EmbedResponse)
async def embed(request: EmbedRequest):
    """
    Get text embeddings

    - **texts**: List of texts to embed
    """
    try:
        start_time = datetime.now()
        embedder = get_embedder()

        # Tokenize and get embeddings
        inputs = embedder["tokenizer"](
            request.texts,
            padding=True,
            truncation=True,
            return_tensors="pt"
        )

        with torch.no_grad():
            outputs = embedder["model"](**inputs)
            # Use mean pooling
            embeddings = outputs.last_hidden_state.mean(dim=1)

        latency = (datetime.now() - start_time).total_seconds() * 1000

        return EmbedResponse(
            embeddings=embeddings.tolist(),
            model=MODEL_NAME,
            dimensions=embeddings.shape[1],
            latency_ms=round(latency, 2)
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)