File size: 5,891 Bytes
09b5534 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
"""
Docker Model Runner - FastAPI application with named endpoints
"""
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Optional, List
import torch
from transformers import pipeline, AutoTokenizer, AutoModel
import os
from datetime import datetime
app = FastAPI(
title="Docker Model Runner",
description="HuggingFace Space with named endpoints for model inference",
version="1.0.0"
)
# Model configurations
MODEL_NAME = os.getenv("MODEL_NAME", "distilbert-base-uncased")
GENERATOR_MODEL = os.getenv("GENERATOR_MODEL", "gpt2")
# Lazy-loaded pipelines
_classifier = None
_generator = None
_embedder = None
def get_classifier():
global _classifier
if _classifier is None:
_classifier = pipeline("text-classification", model=MODEL_NAME)
return _classifier
def get_generator():
global _generator
if _generator is None:
_generator = pipeline("text-generation", model=GENERATOR_MODEL)
return _generator
def get_embedder():
global _embedder
if _embedder is None:
_embedder = {
"tokenizer": AutoTokenizer.from_pretrained(MODEL_NAME),
"model": AutoModel.from_pretrained(MODEL_NAME)
}
return _embedder
# Request/Response Models
class PredictRequest(BaseModel):
text: str
top_k: Optional[int] = 1
class PredictResponse(BaseModel):
predictions: List[dict]
model: str
latency_ms: float
class GenerateRequest(BaseModel):
prompt: str
max_length: Optional[int] = 50
num_return_sequences: Optional[int] = 1
temperature: Optional[float] = 1.0
class GenerateResponse(BaseModel):
generated_text: List[str]
model: str
latency_ms: float
class EmbedRequest(BaseModel):
texts: List[str]
class EmbedResponse(BaseModel):
embeddings: List[List[float]]
model: str
dimensions: int
latency_ms: float
class HealthResponse(BaseModel):
status: str
timestamp: str
gpu_available: bool
class InfoResponse(BaseModel):
name: str
version: str
models: dict
endpoints: List[str]
# Named Endpoints
@app.get("/")
async def root():
"""Welcome endpoint"""
return {
"message": "Docker Model Runner API",
"docs": "/docs",
"endpoints": ["/health", "/info", "/predict", "/generate", "/embed"]
}
@app.get("/health", response_model=HealthResponse)
async def health():
"""Health check endpoint"""
return HealthResponse(
status="healthy",
timestamp=datetime.utcnow().isoformat(),
gpu_available=torch.cuda.is_available()
)
@app.get("/info", response_model=InfoResponse)
async def info():
"""Model and API information"""
return InfoResponse(
name="Docker Model Runner",
version="1.0.0",
models={
"classifier": MODEL_NAME,
"generator": GENERATOR_MODEL,
"embedder": MODEL_NAME
},
endpoints=["/", "/health", "/info", "/predict", "/generate", "/embed"]
)
@app.post("/predict", response_model=PredictResponse)
async def predict(request: PredictRequest):
"""
Run text classification prediction
- **text**: Input text to classify
- **top_k**: Number of top predictions to return
"""
try:
start_time = datetime.now()
classifier = get_classifier()
results = classifier(request.text, top_k=request.top_k)
latency = (datetime.now() - start_time).total_seconds() * 1000
return PredictResponse(
predictions=results,
model=MODEL_NAME,
latency_ms=round(latency, 2)
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/generate", response_model=GenerateResponse)
async def generate(request: GenerateRequest):
"""
Generate text from a prompt
- **prompt**: Input prompt for generation
- **max_length**: Maximum length of generated text
- **num_return_sequences**: Number of sequences to generate
- **temperature**: Sampling temperature
"""
try:
start_time = datetime.now()
generator = get_generator()
results = generator(
request.prompt,
max_length=request.max_length,
num_return_sequences=request.num_return_sequences,
temperature=request.temperature,
do_sample=True
)
latency = (datetime.now() - start_time).total_seconds() * 1000
generated_texts = [r["generated_text"] for r in results]
return GenerateResponse(
generated_text=generated_texts,
model=GENERATOR_MODEL,
latency_ms=round(latency, 2)
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/embed", response_model=EmbedResponse)
async def embed(request: EmbedRequest):
"""
Get text embeddings
- **texts**: List of texts to embed
"""
try:
start_time = datetime.now()
embedder = get_embedder()
# Tokenize and get embeddings
inputs = embedder["tokenizer"](
request.texts,
padding=True,
truncation=True,
return_tensors="pt"
)
with torch.no_grad():
outputs = embedder["model"](**inputs)
# Use mean pooling
embeddings = outputs.last_hidden_state.mean(dim=1)
latency = (datetime.now() - start_time).total_seconds() * 1000
return EmbedResponse(
embeddings=embeddings.tolist(),
model=MODEL_NAME,
dimensions=embeddings.shape[1],
latency_ms=round(latency, 2)
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|