Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -11,35 +11,83 @@ pinned: false
|
|
| 11 |
|
| 12 |
# Docker Model Runner
|
| 13 |
|
| 14 |
-
|
| 15 |
|
| 16 |
## Hardware
|
| 17 |
- **CPU Basic**: 2 vCPU · 16 GB RAM
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
## Endpoints
|
| 20 |
|
| 21 |
| Endpoint | Method | Description |
|
| 22 |
|----------|--------|-------------|
|
| 23 |
-
|
|
|
|
|
|
|
|
| 24 |
| `/health` | GET | Health check |
|
| 25 |
-
| `/info` | GET |
|
| 26 |
| `/predict` | POST | Text classification |
|
| 27 |
-
| `/generate` | POST | Text generation |
|
| 28 |
| `/embed` | POST | Text embeddings |
|
| 29 |
|
| 30 |
-
## Usage
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
```
|
|
|
|
| 11 |
|
| 12 |
# Docker Model Runner
|
| 13 |
|
| 14 |
+
Anthropic & OpenAI API compatible Docker Space with named endpoints.
|
| 15 |
|
| 16 |
## Hardware
|
| 17 |
- **CPU Basic**: 2 vCPU · 16 GB RAM
|
| 18 |
|
| 19 |
+
## API Compatibility
|
| 20 |
+
|
| 21 |
+
### Anthropic Messages API
|
| 22 |
+
```bash
|
| 23 |
+
curl -X POST https://likhonsheikhdev-docker-model-runner.hf.space/v1/messages \
|
| 24 |
+
-H "Content-Type: application/json" \
|
| 25 |
+
-H "x-api-key: your-key" \
|
| 26 |
+
-d '{
|
| 27 |
+
"model": "distilgpt2",
|
| 28 |
+
"max_tokens": 256,
|
| 29 |
+
"messages": [
|
| 30 |
+
{"role": "user", "content": "Hello, how are you?"}
|
| 31 |
+
]
|
| 32 |
+
}'
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
### OpenAI Chat Completions API
|
| 36 |
+
```bash
|
| 37 |
+
curl -X POST https://likhonsheikhdev-docker-model-runner.hf.space/v1/chat/completions \
|
| 38 |
+
-H "Content-Type: application/json" \
|
| 39 |
+
-H "Authorization: Bearer your-key" \
|
| 40 |
+
-d '{
|
| 41 |
+
"model": "distilgpt2",
|
| 42 |
+
"messages": [
|
| 43 |
+
{"role": "user", "content": "Hello, how are you?"}
|
| 44 |
+
]
|
| 45 |
+
}'
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
## Endpoints
|
| 49 |
|
| 50 |
| Endpoint | Method | Description |
|
| 51 |
|----------|--------|-------------|
|
| 52 |
+
| `/v1/messages` | POST | Anthropic Messages API |
|
| 53 |
+
| `/v1/chat/completions` | POST | OpenAI Chat API |
|
| 54 |
+
| `/v1/models` | GET | List available models |
|
| 55 |
| `/health` | GET | Health check |
|
| 56 |
+
| `/info` | GET | API information |
|
| 57 |
| `/predict` | POST | Text classification |
|
|
|
|
| 58 |
| `/embed` | POST | Text embeddings |
|
| 59 |
|
| 60 |
+
## Python SDK Usage
|
| 61 |
|
| 62 |
+
### With Anthropic SDK
|
| 63 |
+
```python
|
| 64 |
+
from anthropic import Anthropic
|
| 65 |
|
| 66 |
+
client = Anthropic(
|
| 67 |
+
api_key="any-key",
|
| 68 |
+
base_url="https://likhonsheikhdev-docker-model-runner.hf.space"
|
| 69 |
+
)
|
| 70 |
|
| 71 |
+
message = client.messages.create(
|
| 72 |
+
model="distilgpt2",
|
| 73 |
+
max_tokens=256,
|
| 74 |
+
messages=[{"role": "user", "content": "Hello!"}]
|
| 75 |
+
)
|
| 76 |
+
print(message.content[0].text)
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
### With OpenAI SDK
|
| 80 |
+
```python
|
| 81 |
+
from openai import OpenAI
|
| 82 |
+
|
| 83 |
+
client = OpenAI(
|
| 84 |
+
api_key="any-key",
|
| 85 |
+
base_url="https://likhonsheikhdev-docker-model-runner.hf.space/v1"
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
response = client.chat.completions.create(
|
| 89 |
+
model="distilgpt2",
|
| 90 |
+
messages=[{"role": "user", "content": "Hello!"}]
|
| 91 |
+
)
|
| 92 |
+
print(response.choices[0].message.content)
|
| 93 |
```
|
main.py
CHANGED
|
@@ -1,15 +1,18 @@
|
|
| 1 |
"""
|
| 2 |
Docker Model Runner - CPU-Optimized FastAPI application
|
|
|
|
| 3 |
Optimized for: 2 vCPU, 16GB RAM
|
| 4 |
"""
|
| 5 |
-
from fastapi import FastAPI, HTTPException
|
| 6 |
-
from pydantic import BaseModel
|
| 7 |
-
from typing import Optional, List
|
| 8 |
import torch
|
| 9 |
-
from transformers import pipeline, AutoTokenizer, AutoModel
|
| 10 |
import os
|
| 11 |
from datetime import datetime
|
| 12 |
from contextlib import asynccontextmanager
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# CPU-optimized lightweight models
|
| 15 |
MODEL_NAME = os.getenv("MODEL_NAME", "distilbert-base-uncased-finetuned-sst-2-english")
|
|
@@ -28,25 +31,27 @@ def load_models():
|
|
| 28 |
global models
|
| 29 |
print("Loading models for CPU inference...")
|
| 30 |
|
| 31 |
-
#
|
| 32 |
models["classifier"] = pipeline(
|
| 33 |
"text-classification",
|
| 34 |
model=MODEL_NAME,
|
| 35 |
-
device=-1, # CPU
|
| 36 |
-
torch_dtype=torch.float32
|
| 37 |
-
)
|
| 38 |
-
|
| 39 |
-
models["generator"] = pipeline(
|
| 40 |
-
"text-generation",
|
| 41 |
-
model=GENERATOR_MODEL,
|
| 42 |
device=-1,
|
| 43 |
torch_dtype=torch.float32
|
| 44 |
)
|
| 45 |
|
| 46 |
-
#
|
| 47 |
-
models["
|
| 48 |
-
models["
|
| 49 |
-
models["
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
print("✅ All models loaded successfully!")
|
| 52 |
|
|
@@ -60,33 +65,91 @@ async def lifespan(app: FastAPI):
|
|
| 60 |
|
| 61 |
app = FastAPI(
|
| 62 |
title="Docker Model Runner",
|
| 63 |
-
description="CPU-Optimized HuggingFace Space
|
| 64 |
version="1.0.0",
|
| 65 |
lifespan=lifespan
|
| 66 |
)
|
| 67 |
|
| 68 |
|
| 69 |
-
#
|
| 70 |
-
|
|
|
|
|
|
|
| 71 |
text: str
|
| 72 |
-
top_k: Optional[int] = 1
|
| 73 |
|
| 74 |
|
| 75 |
-
class
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
model: str
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
|
| 81 |
-
class
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
temperature: Optional[float] = 0.7
|
|
|
|
|
|
|
| 86 |
|
| 87 |
|
| 88 |
-
class
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
model: str
|
| 91 |
latency_ms: float
|
| 92 |
|
|
@@ -109,23 +172,178 @@ class HealthResponse(BaseModel):
|
|
| 109 |
models_loaded: bool
|
| 110 |
|
| 111 |
|
| 112 |
-
class
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
-
# Named Endpoints
|
| 121 |
@app.get("/")
|
| 122 |
async def root():
|
| 123 |
"""Welcome endpoint"""
|
| 124 |
return {
|
| 125 |
-
"message": "Docker Model Runner API (
|
| 126 |
"hardware": "CPU Basic: 2 vCPU · 16 GB RAM",
|
| 127 |
"docs": "/docs",
|
| 128 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
}
|
| 130 |
|
| 131 |
|
|
@@ -140,30 +358,32 @@ async def health():
|
|
| 140 |
)
|
| 141 |
|
| 142 |
|
| 143 |
-
@app.get("/info"
|
| 144 |
async def info():
|
| 145 |
"""Model and API information"""
|
| 146 |
-
return
|
| 147 |
-
name
|
| 148 |
-
version
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
| 151 |
"classifier": MODEL_NAME,
|
| 152 |
-
"generator": GENERATOR_MODEL,
|
| 153 |
"embedder": EMBED_MODEL
|
| 154 |
},
|
| 155 |
-
endpoints
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
|
| 159 |
@app.post("/predict", response_model=PredictResponse)
|
| 160 |
async def predict(request: PredictRequest):
|
| 161 |
-
"""
|
| 162 |
-
Run text classification (sentiment analysis)
|
| 163 |
-
|
| 164 |
-
- **text**: Input text to classify
|
| 165 |
-
- **top_k**: Number of top predictions to return
|
| 166 |
-
"""
|
| 167 |
try:
|
| 168 |
start_time = datetime.now()
|
| 169 |
results = models["classifier"](request.text, top_k=request.top_k)
|
|
@@ -178,50 +398,13 @@ async def predict(request: PredictRequest):
|
|
| 178 |
raise HTTPException(status_code=500, detail=str(e))
|
| 179 |
|
| 180 |
|
| 181 |
-
@app.post("/generate", response_model=GenerateResponse)
|
| 182 |
-
async def generate(request: GenerateRequest):
|
| 183 |
-
"""
|
| 184 |
-
Generate text from a prompt
|
| 185 |
-
|
| 186 |
-
- **prompt**: Input prompt for generation
|
| 187 |
-
- **max_length**: Maximum length of generated text (default: 50)
|
| 188 |
-
- **temperature**: Sampling temperature (default: 0.7)
|
| 189 |
-
"""
|
| 190 |
-
try:
|
| 191 |
-
start_time = datetime.now()
|
| 192 |
-
results = models["generator"](
|
| 193 |
-
request.prompt,
|
| 194 |
-
max_length=request.max_length,
|
| 195 |
-
num_return_sequences=request.num_return_sequences,
|
| 196 |
-
temperature=request.temperature,
|
| 197 |
-
do_sample=True,
|
| 198 |
-
pad_token_id=50256 # GPT2 pad token
|
| 199 |
-
)
|
| 200 |
-
latency = (datetime.now() - start_time).total_seconds() * 1000
|
| 201 |
-
|
| 202 |
-
generated_texts = [r["generated_text"] for r in results]
|
| 203 |
-
|
| 204 |
-
return GenerateResponse(
|
| 205 |
-
generated_text=generated_texts,
|
| 206 |
-
model=GENERATOR_MODEL,
|
| 207 |
-
latency_ms=round(latency, 2)
|
| 208 |
-
)
|
| 209 |
-
except Exception as e:
|
| 210 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 211 |
-
|
| 212 |
-
|
| 213 |
@app.post("/embed", response_model=EmbedResponse)
|
| 214 |
async def embed(request: EmbedRequest):
|
| 215 |
-
"""
|
| 216 |
-
Get text embeddings using MiniLM (384 dimensions)
|
| 217 |
-
|
| 218 |
-
- **texts**: List of texts to embed
|
| 219 |
-
"""
|
| 220 |
try:
|
| 221 |
start_time = datetime.now()
|
| 222 |
|
| 223 |
-
|
| 224 |
-
inputs = models["tokenizer"](
|
| 225 |
request.texts,
|
| 226 |
padding=True,
|
| 227 |
truncation=True,
|
|
@@ -229,10 +412,8 @@ async def embed(request: EmbedRequest):
|
|
| 229 |
return_tensors="pt"
|
| 230 |
)
|
| 231 |
|
| 232 |
-
# Get embeddings
|
| 233 |
with torch.no_grad():
|
| 234 |
-
outputs = models["
|
| 235 |
-
# Mean pooling
|
| 236 |
attention_mask = inputs["attention_mask"]
|
| 237 |
token_embeddings = outputs.last_hidden_state
|
| 238 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
|
|
|
| 1 |
"""
|
| 2 |
Docker Model Runner - CPU-Optimized FastAPI application
|
| 3 |
+
Compatible with Anthropic API format
|
| 4 |
Optimized for: 2 vCPU, 16GB RAM
|
| 5 |
"""
|
| 6 |
+
from fastapi import FastAPI, HTTPException, Header
|
| 7 |
+
from pydantic import BaseModel, Field
|
| 8 |
+
from typing import Optional, List, Union, Literal
|
| 9 |
import torch
|
| 10 |
+
from transformers import pipeline, AutoTokenizer, AutoModel, AutoModelForCausalLM
|
| 11 |
import os
|
| 12 |
from datetime import datetime
|
| 13 |
from contextlib import asynccontextmanager
|
| 14 |
+
import uuid
|
| 15 |
+
import time
|
| 16 |
|
| 17 |
# CPU-optimized lightweight models
|
| 18 |
MODEL_NAME = os.getenv("MODEL_NAME", "distilbert-base-uncased-finetuned-sst-2-english")
|
|
|
|
| 31 |
global models
|
| 32 |
print("Loading models for CPU inference...")
|
| 33 |
|
| 34 |
+
# Classifier
|
| 35 |
models["classifier"] = pipeline(
|
| 36 |
"text-classification",
|
| 37 |
model=MODEL_NAME,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
device=-1,
|
| 39 |
torch_dtype=torch.float32
|
| 40 |
)
|
| 41 |
|
| 42 |
+
# Generator with tokenizer for chat
|
| 43 |
+
models["generator_tokenizer"] = AutoTokenizer.from_pretrained(GENERATOR_MODEL)
|
| 44 |
+
models["generator_model"] = AutoModelForCausalLM.from_pretrained(GENERATOR_MODEL)
|
| 45 |
+
models["generator_model"].eval()
|
| 46 |
+
|
| 47 |
+
# Set pad token
|
| 48 |
+
if models["generator_tokenizer"].pad_token is None:
|
| 49 |
+
models["generator_tokenizer"].pad_token = models["generator_tokenizer"].eos_token
|
| 50 |
+
|
| 51 |
+
# Embedding model
|
| 52 |
+
models["embed_tokenizer"] = AutoTokenizer.from_pretrained(EMBED_MODEL)
|
| 53 |
+
models["embed_model"] = AutoModel.from_pretrained(EMBED_MODEL)
|
| 54 |
+
models["embed_model"].eval()
|
| 55 |
|
| 56 |
print("✅ All models loaded successfully!")
|
| 57 |
|
|
|
|
| 65 |
|
| 66 |
app = FastAPI(
|
| 67 |
title="Docker Model Runner",
|
| 68 |
+
description="Anthropic API Compatible - CPU-Optimized HuggingFace Space",
|
| 69 |
version="1.0.0",
|
| 70 |
lifespan=lifespan
|
| 71 |
)
|
| 72 |
|
| 73 |
|
| 74 |
+
# ============== Anthropic API Models ==============
|
| 75 |
+
|
| 76 |
+
class ContentBlock(BaseModel):
|
| 77 |
+
type: Literal["text"] = "text"
|
| 78 |
text: str
|
|
|
|
| 79 |
|
| 80 |
|
| 81 |
+
class MessageContent(BaseModel):
|
| 82 |
+
role: Literal["user", "assistant"]
|
| 83 |
+
content: Union[str, List[ContentBlock]]
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class AnthropicRequest(BaseModel):
|
| 87 |
+
model: str = "distilgpt2"
|
| 88 |
+
messages: List[MessageContent]
|
| 89 |
+
max_tokens: int = 1024
|
| 90 |
+
temperature: Optional[float] = 0.7
|
| 91 |
+
top_p: Optional[float] = 1.0
|
| 92 |
+
stop_sequences: Optional[List[str]] = None
|
| 93 |
+
stream: Optional[bool] = False
|
| 94 |
+
system: Optional[str] = None
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class Usage(BaseModel):
|
| 98 |
+
input_tokens: int
|
| 99 |
+
output_tokens: int
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
class AnthropicResponse(BaseModel):
|
| 103 |
+
id: str
|
| 104 |
+
type: Literal["message"] = "message"
|
| 105 |
+
role: Literal["assistant"] = "assistant"
|
| 106 |
+
content: List[ContentBlock]
|
| 107 |
model: str
|
| 108 |
+
stop_reason: Literal["end_turn", "max_tokens", "stop_sequence"] = "end_turn"
|
| 109 |
+
stop_sequence: Optional[str] = None
|
| 110 |
+
usage: Usage
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# ============== OpenAI Compatible Models ==============
|
| 114 |
+
|
| 115 |
+
class ChatMessage(BaseModel):
|
| 116 |
+
role: str
|
| 117 |
+
content: str
|
| 118 |
|
| 119 |
|
| 120 |
+
class ChatCompletionRequest(BaseModel):
|
| 121 |
+
model: str = "distilgpt2"
|
| 122 |
+
messages: List[ChatMessage]
|
| 123 |
+
max_tokens: Optional[int] = 1024
|
| 124 |
temperature: Optional[float] = 0.7
|
| 125 |
+
top_p: Optional[float] = 1.0
|
| 126 |
+
stream: Optional[bool] = False
|
| 127 |
|
| 128 |
|
| 129 |
+
class ChatChoice(BaseModel):
|
| 130 |
+
index: int = 0
|
| 131 |
+
message: ChatMessage
|
| 132 |
+
finish_reason: str = "stop"
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class ChatCompletionResponse(BaseModel):
|
| 136 |
+
id: str
|
| 137 |
+
object: str = "chat.completion"
|
| 138 |
+
created: int
|
| 139 |
+
model: str
|
| 140 |
+
choices: List[ChatChoice]
|
| 141 |
+
usage: dict
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
# ============== Other Request/Response Models ==============
|
| 145 |
+
|
| 146 |
+
class PredictRequest(BaseModel):
|
| 147 |
+
text: str
|
| 148 |
+
top_k: Optional[int] = 1
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
class PredictResponse(BaseModel):
|
| 152 |
+
predictions: List[dict]
|
| 153 |
model: str
|
| 154 |
latency_ms: float
|
| 155 |
|
|
|
|
| 172 |
models_loaded: bool
|
| 173 |
|
| 174 |
|
| 175 |
+
class ModelInfo(BaseModel):
|
| 176 |
+
id: str
|
| 177 |
+
object: str = "model"
|
| 178 |
+
created: int
|
| 179 |
+
owned_by: str = "local"
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
class ModelsResponse(BaseModel):
|
| 183 |
+
object: str = "list"
|
| 184 |
+
data: List[ModelInfo]
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
# ============== Helper Functions ==============
|
| 188 |
+
|
| 189 |
+
def generate_text(prompt: str, max_tokens: int, temperature: float, top_p: float) -> tuple:
|
| 190 |
+
"""Generate text and return (text, input_tokens, output_tokens)"""
|
| 191 |
+
tokenizer = models["generator_tokenizer"]
|
| 192 |
+
model = models["generator_model"]
|
| 193 |
+
|
| 194 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 195 |
+
input_tokens = inputs["input_ids"].shape[1]
|
| 196 |
+
|
| 197 |
+
with torch.no_grad():
|
| 198 |
+
outputs = model.generate(
|
| 199 |
+
**inputs,
|
| 200 |
+
max_new_tokens=max_tokens,
|
| 201 |
+
temperature=temperature if temperature > 0 else 1.0,
|
| 202 |
+
top_p=top_p,
|
| 203 |
+
do_sample=temperature > 0,
|
| 204 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 205 |
+
eos_token_id=tokenizer.eos_token_id
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
generated_tokens = outputs[0][input_tokens:]
|
| 209 |
+
output_tokens = len(generated_tokens)
|
| 210 |
+
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 211 |
+
|
| 212 |
+
return generated_text.strip(), input_tokens, output_tokens
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def format_messages_to_prompt(messages: List, system: Optional[str] = None) -> str:
|
| 216 |
+
"""Convert chat messages to a single prompt string"""
|
| 217 |
+
prompt_parts = []
|
| 218 |
+
|
| 219 |
+
if system:
|
| 220 |
+
prompt_parts.append(f"System: {system}\n")
|
| 221 |
+
|
| 222 |
+
for msg in messages:
|
| 223 |
+
role = msg.role if hasattr(msg, 'role') else msg.get('role', 'user')
|
| 224 |
+
content = msg.content if hasattr(msg, 'content') else msg.get('content', '')
|
| 225 |
+
|
| 226 |
+
# Handle content that might be a list of blocks
|
| 227 |
+
if isinstance(content, list):
|
| 228 |
+
content = " ".join([block.text if hasattr(block, 'text') else block.get('text', '') for block in content])
|
| 229 |
+
|
| 230 |
+
if role == "user":
|
| 231 |
+
prompt_parts.append(f"Human: {content}\n")
|
| 232 |
+
elif role == "assistant":
|
| 233 |
+
prompt_parts.append(f"Assistant: {content}\n")
|
| 234 |
+
|
| 235 |
+
prompt_parts.append("Assistant:")
|
| 236 |
+
return "".join(prompt_parts)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
# ============== Anthropic API Endpoints ==============
|
| 240 |
+
|
| 241 |
+
@app.post("/v1/messages", response_model=AnthropicResponse)
|
| 242 |
+
async def create_message(
|
| 243 |
+
request: AnthropicRequest,
|
| 244 |
+
x_api_key: Optional[str] = Header(None, alias="x-api-key"),
|
| 245 |
+
authorization: Optional[str] = Header(None)
|
| 246 |
+
):
|
| 247 |
+
"""
|
| 248 |
+
Anthropic Messages API compatible endpoint
|
| 249 |
+
|
| 250 |
+
POST /v1/messages
|
| 251 |
+
"""
|
| 252 |
+
try:
|
| 253 |
+
# Format messages to prompt
|
| 254 |
+
prompt = format_messages_to_prompt(request.messages, request.system)
|
| 255 |
+
|
| 256 |
+
# Generate response
|
| 257 |
+
generated_text, input_tokens, output_tokens = generate_text(
|
| 258 |
+
prompt=prompt,
|
| 259 |
+
max_tokens=request.max_tokens,
|
| 260 |
+
temperature=request.temperature or 0.7,
|
| 261 |
+
top_p=request.top_p or 1.0
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
return AnthropicResponse(
|
| 265 |
+
id=f"msg_{uuid.uuid4().hex[:24]}",
|
| 266 |
+
content=[ContentBlock(type="text", text=generated_text)],
|
| 267 |
+
model=GENERATOR_MODEL,
|
| 268 |
+
stop_reason="end_turn",
|
| 269 |
+
usage=Usage(input_tokens=input_tokens, output_tokens=output_tokens)
|
| 270 |
+
)
|
| 271 |
+
except Exception as e:
|
| 272 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
# ============== OpenAI Compatible Endpoints ==============
|
| 276 |
+
|
| 277 |
+
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
| 278 |
+
async def chat_completions(
|
| 279 |
+
request: ChatCompletionRequest,
|
| 280 |
+
authorization: Optional[str] = Header(None)
|
| 281 |
+
):
|
| 282 |
+
"""
|
| 283 |
+
OpenAI Chat Completions API compatible endpoint
|
| 284 |
|
| 285 |
+
POST /v1/chat/completions
|
| 286 |
+
"""
|
| 287 |
+
try:
|
| 288 |
+
# Format messages to prompt
|
| 289 |
+
prompt = format_messages_to_prompt(request.messages)
|
| 290 |
+
|
| 291 |
+
# Generate response
|
| 292 |
+
generated_text, input_tokens, output_tokens = generate_text(
|
| 293 |
+
prompt=prompt,
|
| 294 |
+
max_tokens=request.max_tokens or 1024,
|
| 295 |
+
temperature=request.temperature or 0.7,
|
| 296 |
+
top_p=request.top_p or 1.0
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
return ChatCompletionResponse(
|
| 300 |
+
id=f"chatcmpl-{uuid.uuid4().hex[:24]}",
|
| 301 |
+
created=int(time.time()),
|
| 302 |
+
model=GENERATOR_MODEL,
|
| 303 |
+
choices=[
|
| 304 |
+
ChatChoice(
|
| 305 |
+
index=0,
|
| 306 |
+
message=ChatMessage(role="assistant", content=generated_text),
|
| 307 |
+
finish_reason="stop"
|
| 308 |
+
)
|
| 309 |
+
],
|
| 310 |
+
usage={
|
| 311 |
+
"prompt_tokens": input_tokens,
|
| 312 |
+
"completion_tokens": output_tokens,
|
| 313 |
+
"total_tokens": input_tokens + output_tokens
|
| 314 |
+
}
|
| 315 |
+
)
|
| 316 |
+
except Exception as e:
|
| 317 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
@app.get("/v1/models", response_model=ModelsResponse)
|
| 321 |
+
async def list_models():
|
| 322 |
+
"""List available models (OpenAI compatible)"""
|
| 323 |
+
return ModelsResponse(
|
| 324 |
+
data=[
|
| 325 |
+
ModelInfo(id=GENERATOR_MODEL, created=int(time.time())),
|
| 326 |
+
ModelInfo(id=MODEL_NAME, created=int(time.time())),
|
| 327 |
+
ModelInfo(id=EMBED_MODEL, created=int(time.time()))
|
| 328 |
+
]
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
# ============== Original Endpoints ==============
|
| 333 |
|
|
|
|
| 334 |
@app.get("/")
|
| 335 |
async def root():
|
| 336 |
"""Welcome endpoint"""
|
| 337 |
return {
|
| 338 |
+
"message": "Docker Model Runner API (Anthropic Compatible)",
|
| 339 |
"hardware": "CPU Basic: 2 vCPU · 16 GB RAM",
|
| 340 |
"docs": "/docs",
|
| 341 |
+
"api_endpoints": {
|
| 342 |
+
"anthropic": "/v1/messages",
|
| 343 |
+
"openai": "/v1/chat/completions",
|
| 344 |
+
"models": "/v1/models"
|
| 345 |
+
},
|
| 346 |
+
"utility_endpoints": ["/health", "/info", "/predict", "/embed"]
|
| 347 |
}
|
| 348 |
|
| 349 |
|
|
|
|
| 358 |
)
|
| 359 |
|
| 360 |
|
| 361 |
+
@app.get("/info")
|
| 362 |
async def info():
|
| 363 |
"""Model and API information"""
|
| 364 |
+
return {
|
| 365 |
+
"name": "Docker Model Runner",
|
| 366 |
+
"version": "1.0.0",
|
| 367 |
+
"api_compatibility": ["anthropic", "openai"],
|
| 368 |
+
"hardware": "CPU Basic: 2 vCPU · 16 GB RAM",
|
| 369 |
+
"models": {
|
| 370 |
+
"chat": GENERATOR_MODEL,
|
| 371 |
"classifier": MODEL_NAME,
|
|
|
|
| 372 |
"embedder": EMBED_MODEL
|
| 373 |
},
|
| 374 |
+
"endpoints": {
|
| 375 |
+
"anthropic_messages": "POST /v1/messages",
|
| 376 |
+
"openai_chat": "POST /v1/chat/completions",
|
| 377 |
+
"models": "GET /v1/models",
|
| 378 |
+
"predict": "POST /predict",
|
| 379 |
+
"embed": "POST /embed"
|
| 380 |
+
}
|
| 381 |
+
}
|
| 382 |
|
| 383 |
|
| 384 |
@app.post("/predict", response_model=PredictResponse)
|
| 385 |
async def predict(request: PredictRequest):
|
| 386 |
+
"""Text classification (sentiment analysis)"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
try:
|
| 388 |
start_time = datetime.now()
|
| 389 |
results = models["classifier"](request.text, top_k=request.top_k)
|
|
|
|
| 398 |
raise HTTPException(status_code=500, detail=str(e))
|
| 399 |
|
| 400 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 401 |
@app.post("/embed", response_model=EmbedResponse)
|
| 402 |
async def embed(request: EmbedRequest):
|
| 403 |
+
"""Get text embeddings"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
try:
|
| 405 |
start_time = datetime.now()
|
| 406 |
|
| 407 |
+
inputs = models["embed_tokenizer"](
|
|
|
|
| 408 |
request.texts,
|
| 409 |
padding=True,
|
| 410 |
truncation=True,
|
|
|
|
| 412 |
return_tensors="pt"
|
| 413 |
)
|
| 414 |
|
|
|
|
| 415 |
with torch.no_grad():
|
| 416 |
+
outputs = models["embed_model"](**inputs)
|
|
|
|
| 417 |
attention_mask = inputs["attention_mask"]
|
| 418 |
token_embeddings = outputs.last_hidden_state
|
| 419 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|