Upload folder using huggingface_hub
Browse files
main.py
CHANGED
|
@@ -1,11 +1,13 @@
|
|
| 1 |
"""
|
| 2 |
Docker Model Runner - Anthropic API Compatible
|
| 3 |
Full compatibility with Anthropic Messages API + Interleaved Thinking
|
|
|
|
| 4 |
Optimized for: 2 vCPU, 16GB RAM
|
| 5 |
"""
|
| 6 |
from fastapi import FastAPI, HTTPException, Header, Request
|
| 7 |
from fastapi.responses import StreamingResponse, HTMLResponse, FileResponse
|
| 8 |
from fastapi.staticfiles import StaticFiles
|
|
|
|
| 9 |
from pydantic import BaseModel, Field
|
| 10 |
from typing import Optional, List, Union, Literal, Any, Dict
|
| 11 |
import torch
|
|
@@ -17,7 +19,6 @@ import uuid
|
|
| 17 |
import time
|
| 18 |
import json
|
| 19 |
import asyncio
|
| 20 |
-
import re
|
| 21 |
|
| 22 |
# CPU-optimized lightweight models
|
| 23 |
GENERATOR_MODEL = os.getenv("GENERATOR_MODEL", "distilgpt2")
|
|
@@ -31,17 +32,13 @@ models = {}
|
|
| 31 |
|
| 32 |
|
| 33 |
def load_models():
|
| 34 |
-
"""Pre-load models for faster inference"""
|
| 35 |
global models
|
| 36 |
print("Loading models for CPU inference...")
|
| 37 |
-
|
| 38 |
models["tokenizer"] = AutoTokenizer.from_pretrained(GENERATOR_MODEL)
|
| 39 |
models["model"] = AutoModelForCausalLM.from_pretrained(GENERATOR_MODEL)
|
| 40 |
models["model"].eval()
|
| 41 |
-
|
| 42 |
if models["tokenizer"].pad_token is None:
|
| 43 |
models["tokenizer"].pad_token = models["tokenizer"].eos_token
|
| 44 |
-
|
| 45 |
print("✅ All models loaded successfully!")
|
| 46 |
|
| 47 |
|
|
@@ -54,13 +51,22 @@ async def lifespan(app: FastAPI):
|
|
| 54 |
|
| 55 |
app = FastAPI(
|
| 56 |
title="Model Runner",
|
| 57 |
-
description="Anthropic API Compatible with
|
| 58 |
-
version="1.
|
| 59 |
lifespan=lifespan,
|
| 60 |
docs_url="/api/docs",
|
| 61 |
redoc_url="/api/redoc"
|
| 62 |
)
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# ============== Anthropic API Models ==============
|
| 66 |
|
|
@@ -143,7 +149,7 @@ class Metadata(BaseModel):
|
|
| 143 |
class AnthropicRequest(BaseModel):
|
| 144 |
model: str = "MiniMax-M2"
|
| 145 |
messages: List[MessageParam]
|
| 146 |
-
max_tokens: int =
|
| 147 |
temperature: Optional[float] = Field(default=1.0, gt=0.0, le=1.0)
|
| 148 |
top_p: Optional[float] = Field(default=1.0, gt=0.0, le=1.0)
|
| 149 |
top_k: Optional[int] = None
|
|
@@ -153,7 +159,7 @@ class AnthropicRequest(BaseModel):
|
|
| 153 |
tools: Optional[List[Tool]] = None
|
| 154 |
tool_choice: Optional[Union[ToolChoice, Dict[str, Any]]] = None
|
| 155 |
metadata: Optional[Metadata] = None
|
| 156 |
-
thinking: Optional[ThinkingConfig] = None
|
| 157 |
service_tier: Optional[str] = None
|
| 158 |
|
| 159 |
|
|
@@ -219,10 +225,13 @@ def format_messages_to_prompt(messages: List[MessageParam], system: Optional[Uni
|
|
| 219 |
if block_type == 'thinking' and include_thinking:
|
| 220 |
prompt_parts.append(f"<thinking>{block.get('thinking', '')}</thinking>\n")
|
| 221 |
elif block_type == 'text':
|
|
|
|
| 222 |
if role == "user":
|
| 223 |
-
prompt_parts.append(f"Human: {
|
| 224 |
else:
|
| 225 |
-
prompt_parts.append(f"Assistant: {
|
|
|
|
|
|
|
| 226 |
elif hasattr(block, 'type'):
|
| 227 |
if block.type == 'thinking' and include_thinking:
|
| 228 |
prompt_parts.append(f"<thinking>{block.thinking}</thinking>\n")
|
|
@@ -244,12 +253,12 @@ def format_messages_to_prompt(messages: List[MessageParam], system: Optional[Uni
|
|
| 244 |
def generate_text(prompt: str, max_tokens: int, temperature: float, top_p: float) -> tuple:
|
| 245 |
tokenizer = models["tokenizer"]
|
| 246 |
model = models["model"]
|
| 247 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=
|
| 248 |
input_tokens = inputs["input_ids"].shape[1]
|
| 249 |
with torch.no_grad():
|
| 250 |
outputs = model.generate(
|
| 251 |
**inputs,
|
| 252 |
-
max_new_tokens=min(max_tokens,
|
| 253 |
temperature=temperature if temperature > 0 else 1.0,
|
| 254 |
top_p=top_p,
|
| 255 |
do_sample=temperature > 0,
|
|
@@ -271,7 +280,7 @@ def generate_thinking(prompt: str, budget_tokens: int = 100) -> tuple:
|
|
| 271 |
with torch.no_grad():
|
| 272 |
outputs = model.generate(
|
| 273 |
**inputs,
|
| 274 |
-
max_new_tokens=min(budget_tokens,
|
| 275 |
temperature=0.7,
|
| 276 |
top_p=0.9,
|
| 277 |
do_sample=True,
|
|
@@ -287,7 +296,7 @@ def generate_thinking(prompt: str, budget_tokens: int = 100) -> tuple:
|
|
| 287 |
async def generate_stream_with_thinking(prompt: str, max_tokens: int, temperature: float, top_p: float, message_id: str, model_name: str, thinking_enabled: bool = False, thinking_budget: int = 100):
|
| 288 |
tokenizer = models["tokenizer"]
|
| 289 |
model = models["model"]
|
| 290 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=
|
| 291 |
input_tokens = inputs["input_ids"].shape[1]
|
| 292 |
total_output_tokens = 0
|
| 293 |
|
|
@@ -314,7 +323,7 @@ async def generate_stream_with_thinking(prompt: str, max_tokens: int, temperatur
|
|
| 314 |
yield f"event: content_block_start\ndata: {json.dumps({'type': 'content_block_start', 'index': content_index, 'content_block': {'type': 'text', 'text': ''}})}\n\n"
|
| 315 |
|
| 316 |
with torch.no_grad():
|
| 317 |
-
outputs = model.generate(**inputs, max_new_tokens=min(max_tokens,
|
| 318 |
|
| 319 |
generated_tokens = outputs[0][input_tokens:]
|
| 320 |
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
|
|
@@ -322,7 +331,7 @@ async def generate_stream_with_thinking(prompt: str, max_tokens: int, temperatur
|
|
| 322 |
|
| 323 |
for i in range(0, len(generated_text), 5):
|
| 324 |
yield f"event: content_block_delta\ndata: {json.dumps({'type': 'content_block_delta', 'index': content_index, 'delta': {'type': 'text_delta', 'text': generated_text[i:i+5]}})}\n\n"
|
| 325 |
-
await asyncio.sleep(0.
|
| 326 |
|
| 327 |
yield f"event: content_block_stop\ndata: {json.dumps({'type': 'content_block_stop', 'index': content_index})}\n\n"
|
| 328 |
yield f"event: message_delta\ndata: {json.dumps({'type': 'message_delta', 'delta': {'stop_reason': 'end_turn', 'stop_sequence': None}, 'usage': {'output_tokens': total_output_tokens}})}\n\n"
|
|
@@ -338,45 +347,19 @@ def handle_tool_call(tools: List[Tool], messages: List[MessageParam], generated_
|
|
| 338 |
return None
|
| 339 |
|
| 340 |
|
| 341 |
-
# ==============
|
| 342 |
-
|
| 343 |
-
@app.get("/", response_class=HTMLResponse)
|
| 344 |
-
async def home():
|
| 345 |
-
"""Serve the minimal centered frontend"""
|
| 346 |
-
try:
|
| 347 |
-
with open("/app/static/index.html", "r") as f:
|
| 348 |
-
return HTMLResponse(content=f.read())
|
| 349 |
-
except:
|
| 350 |
-
return HTMLResponse(content="""
|
| 351 |
-
<!DOCTYPE html>
|
| 352 |
-
<html><head><meta charset="UTF-8"><title>Model Runner</title>
|
| 353 |
-
<style>*{margin:0;padding:0}body{min-height:100vh;background:#000;display:flex;justify-content:center;align-items:center}
|
| 354 |
-
.logo{width:200px;height:200px;animation:float 3s ease-in-out infinite}
|
| 355 |
-
@keyframes float{0%,100%{transform:translateY(0)}50%{transform:translateY(-10px)}}</style></head>
|
| 356 |
-
<body><div class="logo"><svg viewBox="0 0 200 200" fill="none">
|
| 357 |
-
<defs><linearGradient id="r" x1="0%" y1="100%" x2="100%" y2="0%">
|
| 358 |
-
<stop offset="0%" stop-color="#ff0080"/><stop offset="25%" stop-color="#ff4d00"/>
|
| 359 |
-
<stop offset="50%" stop-color="#ffcc00"/><stop offset="75%" stop-color="#00ff88"/>
|
| 360 |
-
<stop offset="100%" stop-color="#00ccff"/></linearGradient></defs>
|
| 361 |
-
<path d="M100 20 L180 160 L20 160 Z" stroke="url(#r)" stroke-width="12" stroke-linecap="round" fill="none"/>
|
| 362 |
-
<path d="M100 70 L130 130 L70 130 Z" stroke="url(#r)" stroke-width="8" stroke-linecap="round" fill="none"/>
|
| 363 |
-
<line x1="80" y1="115" x2="120" y2="115" stroke="url(#r)" stroke-width="6" stroke-linecap="round"/>
|
| 364 |
-
</svg></div></body></html>
|
| 365 |
-
""")
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
# ============== Anthropic API Endpoints ==============
|
| 369 |
|
| 370 |
-
|
| 371 |
-
|
| 372 |
try:
|
| 373 |
message_id = f"msg_{uuid.uuid4().hex[:24]}"
|
| 374 |
thinking_enabled = False
|
| 375 |
thinking_budget = 100
|
|
|
|
| 376 |
if request.thinking:
|
| 377 |
if isinstance(request.thinking, dict):
|
| 378 |
thinking_enabled = request.thinking.get('type') == 'enabled'
|
| 379 |
-
thinking_budget = request.thinking.get('budget_tokens', 100)
|
| 380 |
else:
|
| 381 |
thinking_enabled = request.thinking.type == 'enabled'
|
| 382 |
thinking_budget = request.thinking.budget_tokens or 100
|
|
@@ -416,17 +399,66 @@ async def create_message(request: AnthropicRequest):
|
|
| 416 |
raise HTTPException(status_code=500, detail=str(e))
|
| 417 |
|
| 418 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 419 |
# ============== OpenAI Compatible ==============
|
| 420 |
|
| 421 |
class ChatMessage(BaseModel):
|
| 422 |
role: str
|
| 423 |
-
content: str
|
| 424 |
|
| 425 |
|
| 426 |
class ChatCompletionRequest(BaseModel):
|
| 427 |
-
model: str = "
|
| 428 |
messages: List[ChatMessage]
|
| 429 |
-
max_tokens: Optional[int] =
|
| 430 |
temperature: Optional[float] = 0.7
|
| 431 |
top_p: Optional[float] = 1.0
|
| 432 |
stream: Optional[bool] = False
|
|
@@ -435,19 +467,51 @@ class ChatCompletionRequest(BaseModel):
|
|
| 435 |
@app.post("/v1/chat/completions")
|
| 436 |
async def chat_completions(request: ChatCompletionRequest):
|
| 437 |
try:
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 442 |
except Exception as e:
|
| 443 |
raise HTTPException(status_code=500, detail=str(e))
|
| 444 |
|
| 445 |
|
|
|
|
|
|
|
| 446 |
@app.get("/v1/models")
|
|
|
|
|
|
|
| 447 |
async def list_models():
|
| 448 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
|
| 450 |
|
|
|
|
|
|
|
| 451 |
@app.get("/health")
|
| 452 |
async def health():
|
| 453 |
return {"status": "healthy", "timestamp": datetime.utcnow().isoformat(), "models_loaded": len(models) > 0}
|
|
@@ -455,7 +519,14 @@ async def health():
|
|
| 455 |
|
| 456 |
@app.get("/info")
|
| 457 |
async def info():
|
| 458 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 459 |
|
| 460 |
|
| 461 |
if __name__ == "__main__":
|
|
|
|
| 1 |
"""
|
| 2 |
Docker Model Runner - Anthropic API Compatible
|
| 3 |
Full compatibility with Anthropic Messages API + Interleaved Thinking
|
| 4 |
+
Supports: /v1/messages, /anthropic/v1/messages, /api/v1/messages
|
| 5 |
Optimized for: 2 vCPU, 16GB RAM
|
| 6 |
"""
|
| 7 |
from fastapi import FastAPI, HTTPException, Header, Request
|
| 8 |
from fastapi.responses import StreamingResponse, HTMLResponse, FileResponse
|
| 9 |
from fastapi.staticfiles import StaticFiles
|
| 10 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 11 |
from pydantic import BaseModel, Field
|
| 12 |
from typing import Optional, List, Union, Literal, Any, Dict
|
| 13 |
import torch
|
|
|
|
| 19 |
import time
|
| 20 |
import json
|
| 21 |
import asyncio
|
|
|
|
| 22 |
|
| 23 |
# CPU-optimized lightweight models
|
| 24 |
GENERATOR_MODEL = os.getenv("GENERATOR_MODEL", "distilgpt2")
|
|
|
|
| 32 |
|
| 33 |
|
| 34 |
def load_models():
|
|
|
|
| 35 |
global models
|
| 36 |
print("Loading models for CPU inference...")
|
|
|
|
| 37 |
models["tokenizer"] = AutoTokenizer.from_pretrained(GENERATOR_MODEL)
|
| 38 |
models["model"] = AutoModelForCausalLM.from_pretrained(GENERATOR_MODEL)
|
| 39 |
models["model"].eval()
|
|
|
|
| 40 |
if models["tokenizer"].pad_token is None:
|
| 41 |
models["tokenizer"].pad_token = models["tokenizer"].eos_token
|
|
|
|
| 42 |
print("✅ All models loaded successfully!")
|
| 43 |
|
| 44 |
|
|
|
|
| 51 |
|
| 52 |
app = FastAPI(
|
| 53 |
title="Model Runner",
|
| 54 |
+
description="Anthropic API Compatible - Works with Claude Code & Agentic Tools",
|
| 55 |
+
version="1.1.0",
|
| 56 |
lifespan=lifespan,
|
| 57 |
docs_url="/api/docs",
|
| 58 |
redoc_url="/api/redoc"
|
| 59 |
)
|
| 60 |
|
| 61 |
+
# CORS for agentic tools
|
| 62 |
+
app.add_middleware(
|
| 63 |
+
CORSMiddleware,
|
| 64 |
+
allow_origins=["*"],
|
| 65 |
+
allow_credentials=True,
|
| 66 |
+
allow_methods=["*"],
|
| 67 |
+
allow_headers=["*"],
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
|
| 71 |
# ============== Anthropic API Models ==============
|
| 72 |
|
|
|
|
| 149 |
class AnthropicRequest(BaseModel):
|
| 150 |
model: str = "MiniMax-M2"
|
| 151 |
messages: List[MessageParam]
|
| 152 |
+
max_tokens: int = 4096
|
| 153 |
temperature: Optional[float] = Field(default=1.0, gt=0.0, le=1.0)
|
| 154 |
top_p: Optional[float] = Field(default=1.0, gt=0.0, le=1.0)
|
| 155 |
top_k: Optional[int] = None
|
|
|
|
| 159 |
tools: Optional[List[Tool]] = None
|
| 160 |
tool_choice: Optional[Union[ToolChoice, Dict[str, Any]]] = None
|
| 161 |
metadata: Optional[Metadata] = None
|
| 162 |
+
thinking: Optional[Union[ThinkingConfig, Dict[str, Any]]] = None
|
| 163 |
service_tier: Optional[str] = None
|
| 164 |
|
| 165 |
|
|
|
|
| 225 |
if block_type == 'thinking' and include_thinking:
|
| 226 |
prompt_parts.append(f"<thinking>{block.get('thinking', '')}</thinking>\n")
|
| 227 |
elif block_type == 'text':
|
| 228 |
+
text_content = block.get('text', '')
|
| 229 |
if role == "user":
|
| 230 |
+
prompt_parts.append(f"Human: {text_content}\n\n")
|
| 231 |
else:
|
| 232 |
+
prompt_parts.append(f"Assistant: {text_content}\n\n")
|
| 233 |
+
elif block_type == 'tool_result':
|
| 234 |
+
prompt_parts.append(f"Tool Result: {block.get('content', '')}\n\n")
|
| 235 |
elif hasattr(block, 'type'):
|
| 236 |
if block.type == 'thinking' and include_thinking:
|
| 237 |
prompt_parts.append(f"<thinking>{block.thinking}</thinking>\n")
|
|
|
|
| 253 |
def generate_text(prompt: str, max_tokens: int, temperature: float, top_p: float) -> tuple:
|
| 254 |
tokenizer = models["tokenizer"]
|
| 255 |
model = models["model"]
|
| 256 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
| 257 |
input_tokens = inputs["input_ids"].shape[1]
|
| 258 |
with torch.no_grad():
|
| 259 |
outputs = model.generate(
|
| 260 |
**inputs,
|
| 261 |
+
max_new_tokens=min(max_tokens, 512),
|
| 262 |
temperature=temperature if temperature > 0 else 1.0,
|
| 263 |
top_p=top_p,
|
| 264 |
do_sample=temperature > 0,
|
|
|
|
| 280 |
with torch.no_grad():
|
| 281 |
outputs = model.generate(
|
| 282 |
**inputs,
|
| 283 |
+
max_new_tokens=min(budget_tokens, 256),
|
| 284 |
temperature=0.7,
|
| 285 |
top_p=0.9,
|
| 286 |
do_sample=True,
|
|
|
|
| 296 |
async def generate_stream_with_thinking(prompt: str, max_tokens: int, temperature: float, top_p: float, message_id: str, model_name: str, thinking_enabled: bool = False, thinking_budget: int = 100):
|
| 297 |
tokenizer = models["tokenizer"]
|
| 298 |
model = models["model"]
|
| 299 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
| 300 |
input_tokens = inputs["input_ids"].shape[1]
|
| 301 |
total_output_tokens = 0
|
| 302 |
|
|
|
|
| 323 |
yield f"event: content_block_start\ndata: {json.dumps({'type': 'content_block_start', 'index': content_index, 'content_block': {'type': 'text', 'text': ''}})}\n\n"
|
| 324 |
|
| 325 |
with torch.no_grad():
|
| 326 |
+
outputs = model.generate(**inputs, max_new_tokens=min(max_tokens, 512), temperature=temperature if temperature > 0 else 1.0, top_p=top_p, do_sample=temperature > 0, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)
|
| 327 |
|
| 328 |
generated_tokens = outputs[0][input_tokens:]
|
| 329 |
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
|
|
|
|
| 331 |
|
| 332 |
for i in range(0, len(generated_text), 5):
|
| 333 |
yield f"event: content_block_delta\ndata: {json.dumps({'type': 'content_block_delta', 'index': content_index, 'delta': {'type': 'text_delta', 'text': generated_text[i:i+5]}})}\n\n"
|
| 334 |
+
await asyncio.sleep(0.005)
|
| 335 |
|
| 336 |
yield f"event: content_block_stop\ndata: {json.dumps({'type': 'content_block_stop', 'index': content_index})}\n\n"
|
| 337 |
yield f"event: message_delta\ndata: {json.dumps({'type': 'message_delta', 'delta': {'stop_reason': 'end_turn', 'stop_sequence': None}, 'usage': {'output_tokens': total_output_tokens}})}\n\n"
|
|
|
|
| 347 |
return None
|
| 348 |
|
| 349 |
|
| 350 |
+
# ============== Core Messages Handler ==============
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
|
| 352 |
+
async def handle_messages(request: AnthropicRequest):
|
| 353 |
+
"""Core handler for Anthropic Messages API"""
|
| 354 |
try:
|
| 355 |
message_id = f"msg_{uuid.uuid4().hex[:24]}"
|
| 356 |
thinking_enabled = False
|
| 357 |
thinking_budget = 100
|
| 358 |
+
|
| 359 |
if request.thinking:
|
| 360 |
if isinstance(request.thinking, dict):
|
| 361 |
thinking_enabled = request.thinking.get('type') == 'enabled'
|
| 362 |
+
thinking_budget = request.thinking.get('budget_tokens', 100) or 100
|
| 363 |
else:
|
| 364 |
thinking_enabled = request.thinking.type == 'enabled'
|
| 365 |
thinking_budget = request.thinking.budget_tokens or 100
|
|
|
|
| 399 |
raise HTTPException(status_code=500, detail=str(e))
|
| 400 |
|
| 401 |
|
| 402 |
+
# ============== Frontend ==============
|
| 403 |
+
|
| 404 |
+
@app.get("/", response_class=HTMLResponse)
|
| 405 |
+
async def home():
|
| 406 |
+
return HTMLResponse(content="""<!DOCTYPE html>
|
| 407 |
+
<html><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width,initial-scale=1"><title>Model Runner</title>
|
| 408 |
+
<style>*{margin:0;padding:0;box-sizing:border-box}body{min-height:100vh;background:#000;display:flex;justify-content:center;align-items:center;font-family:system-ui,sans-serif}
|
| 409 |
+
.container{display:flex;flex-direction:column;align-items:center;gap:2rem}
|
| 410 |
+
.logo{width:200px;height:200px;animation:float 3s ease-in-out infinite;filter:drop-shadow(0 0 30px rgba(255,100,100,0.3))}
|
| 411 |
+
.status{display:flex;align-items:center;gap:0.5rem;color:rgba(255,255,255,0.6);font-size:0.875rem}
|
| 412 |
+
.dot{width:8px;height:8px;background:#22c55e;border-radius:50%;animation:pulse 2s ease-in-out infinite}
|
| 413 |
+
.sparkle{position:fixed;bottom:2rem;right:2rem;opacity:0.4}
|
| 414 |
+
@keyframes float{0%,100%{transform:translateY(0)}50%{transform:translateY(-10px)}}
|
| 415 |
+
@keyframes pulse{0%,100%{opacity:1}50%{opacity:0.5}}</style></head>
|
| 416 |
+
<body><div class="container"><div class="logo"><svg viewBox="0 0 200 200" fill="none">
|
| 417 |
+
<defs><linearGradient id="r" x1="0%" y1="100%" x2="100%" y2="0%">
|
| 418 |
+
<stop offset="0%" stop-color="#ff0080"/><stop offset="20%" stop-color="#ff4d00"/>
|
| 419 |
+
<stop offset="40%" stop-color="#ffcc00"/><stop offset="60%" stop-color="#00ff88"/>
|
| 420 |
+
<stop offset="80%" stop-color="#00ccff"/><stop offset="100%" stop-color="#6644ff"/></linearGradient></defs>
|
| 421 |
+
<path d="M100 20 L180 160 L20 160 Z" stroke="url(#r)" stroke-width="12" stroke-linecap="round" stroke-linejoin="round" fill="none"/>
|
| 422 |
+
<path d="M100 70 L130 130 L70 130 Z" stroke="url(#r)" stroke-width="8" stroke-linecap="round" stroke-linejoin="round" fill="none"/>
|
| 423 |
+
<line x1="80" y1="115" x2="120" y2="115" stroke="url(#r)" stroke-width="6" stroke-linecap="round"/>
|
| 424 |
+
</svg></div><div class="status"><span class="dot"></span><span>Ready</span></div></div>
|
| 425 |
+
<svg class="sparkle" width="24" height="24" viewBox="0 0 24 24" fill="none">
|
| 426 |
+
<path d="M12 2L13.5 8.5L20 10L13.5 11.5L12 18L10.5 11.5L4 10L10.5 8.5L12 2Z" fill="rgba(255,255,255,0.6)"/></svg>
|
| 427 |
+
</body></html>""")
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
# ============== Anthropic API Routes ==============
|
| 431 |
+
# Support multiple base paths for compatibility
|
| 432 |
+
|
| 433 |
+
@app.post("/v1/messages")
|
| 434 |
+
async def messages_v1(request: AnthropicRequest):
|
| 435 |
+
"""Standard Anthropic API endpoint"""
|
| 436 |
+
return await handle_messages(request)
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
@app.post("/anthropic/v1/messages")
|
| 440 |
+
async def messages_anthropic(request: AnthropicRequest):
|
| 441 |
+
"""Anthropic base path - for Claude Code compatibility"""
|
| 442 |
+
return await handle_messages(request)
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
@app.post("/api/v1/messages")
|
| 446 |
+
async def messages_api(request: AnthropicRequest):
|
| 447 |
+
"""API base path variant"""
|
| 448 |
+
return await handle_messages(request)
|
| 449 |
+
|
| 450 |
+
|
| 451 |
# ============== OpenAI Compatible ==============
|
| 452 |
|
| 453 |
class ChatMessage(BaseModel):
|
| 454 |
role: str
|
| 455 |
+
content: Union[str, List[Dict[str, Any]]]
|
| 456 |
|
| 457 |
|
| 458 |
class ChatCompletionRequest(BaseModel):
|
| 459 |
+
model: str = "gpt-4"
|
| 460 |
messages: List[ChatMessage]
|
| 461 |
+
max_tokens: Optional[int] = 4096
|
| 462 |
temperature: Optional[float] = 0.7
|
| 463 |
top_p: Optional[float] = 1.0
|
| 464 |
stream: Optional[bool] = False
|
|
|
|
| 467 |
@app.post("/v1/chat/completions")
|
| 468 |
async def chat_completions(request: ChatCompletionRequest):
|
| 469 |
try:
|
| 470 |
+
# Extract text from messages
|
| 471 |
+
formatted_messages = []
|
| 472 |
+
for msg in request.messages:
|
| 473 |
+
if msg.role in ["user", "assistant"]:
|
| 474 |
+
content = msg.content
|
| 475 |
+
if isinstance(content, list):
|
| 476 |
+
text_parts = [c.get('text', '') for c in content if isinstance(c, dict) and c.get('type') == 'text']
|
| 477 |
+
content = ' '.join(text_parts)
|
| 478 |
+
formatted_messages.append(MessageParam(role=msg.role, content=content))
|
| 479 |
+
|
| 480 |
+
prompt = format_messages_to_prompt(formatted_messages)
|
| 481 |
+
generated_text, input_tokens, output_tokens = generate_text(prompt, request.max_tokens or 4096, request.temperature or 0.7, request.top_p or 1.0)
|
| 482 |
+
|
| 483 |
+
return {
|
| 484 |
+
"id": f"chatcmpl-{uuid.uuid4().hex[:24]}",
|
| 485 |
+
"object": "chat.completion",
|
| 486 |
+
"created": int(time.time()),
|
| 487 |
+
"model": request.model,
|
| 488 |
+
"choices": [{"index": 0, "message": {"role": "assistant", "content": generated_text}, "finish_reason": "stop"}],
|
| 489 |
+
"usage": {"prompt_tokens": input_tokens, "completion_tokens": output_tokens, "total_tokens": input_tokens + output_tokens}
|
| 490 |
+
}
|
| 491 |
except Exception as e:
|
| 492 |
raise HTTPException(status_code=500, detail=str(e))
|
| 493 |
|
| 494 |
|
| 495 |
+
# ============== Models Endpoints ==============
|
| 496 |
+
|
| 497 |
@app.get("/v1/models")
|
| 498 |
+
@app.get("/anthropic/v1/models")
|
| 499 |
+
@app.get("/api/v1/models")
|
| 500 |
async def list_models():
|
| 501 |
+
return {
|
| 502 |
+
"object": "list",
|
| 503 |
+
"data": [
|
| 504 |
+
{"id": "claude-sonnet-4-20250514", "object": "model", "created": int(time.time()), "owned_by": "anthropic"},
|
| 505 |
+
{"id": "claude-3-5-sonnet-20241022", "object": "model", "created": int(time.time()), "owned_by": "anthropic"},
|
| 506 |
+
{"id": "MiniMax-M2", "object": "model", "created": int(time.time()), "owned_by": "local"},
|
| 507 |
+
{"id": "MiniMax-M2-Stable", "object": "model", "created": int(time.time()), "owned_by": "local"},
|
| 508 |
+
{"id": GENERATOR_MODEL, "object": "model", "created": int(time.time()), "owned_by": "local"}
|
| 509 |
+
]
|
| 510 |
+
}
|
| 511 |
|
| 512 |
|
| 513 |
+
# ============== Utility Endpoints ==============
|
| 514 |
+
|
| 515 |
@app.get("/health")
|
| 516 |
async def health():
|
| 517 |
return {"status": "healthy", "timestamp": datetime.utcnow().isoformat(), "models_loaded": len(models) > 0}
|
|
|
|
| 519 |
|
| 520 |
@app.get("/info")
|
| 521 |
async def info():
|
| 522 |
+
return {
|
| 523 |
+
"name": "Model Runner",
|
| 524 |
+
"version": "1.1.0",
|
| 525 |
+
"api_compatibility": ["anthropic", "openai"],
|
| 526 |
+
"base_paths": ["/v1/messages", "/anthropic/v1/messages", "/api/v1/messages"],
|
| 527 |
+
"interleaved_thinking": True,
|
| 528 |
+
"agentic_tools": True
|
| 529 |
+
}
|
| 530 |
|
| 531 |
|
| 532 |
if __name__ == "__main__":
|