File size: 10,674 Bytes
809b92e 2779464 809b92e 959ec8a 809b92e 959ec8a 809b92e 546c83b 809b92e 546c83b 959ec8a 809b92e 546c83b 809b92e 0f407f9 959ec8a 809b92e 959ec8a 546c83b 809b92e 959ec8a 546c83b 809b92e 959ec8a 809b92e 959ec8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
# invoice_processor.py
"""
Procesamiento de facturas: OCR, NER y visualización
"""
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import torch
from doctr.io import DocumentFile
from io import BytesIO
from config import LABEL2COLOR, MAX_LENGTH, NORMALIZATION_FACTOR
from validator import InvoiceValidator
class InvoiceProcessor:
"""Clase para procesar facturas y extraer entidades."""
def __init__(self, model_manager):
"""
Inicializa el procesador de facturas.
Args:
model_manager: Instancia de ModelManager con los modelos cargados
"""
self.model_manager = model_manager
self.processor = model_manager.get_processor()
self.model = model_manager.get_model()
self.ocr_model = model_manager.get_ocr_model()
self.device = model_manager.get_device()
self.validator = InvoiceValidator() # ✅ AGREGADO
def extract_ocr_data(self, image: Image.Image):
"""
Extrae texto y bounding boxes usando DocTR.
Args:
image: Imagen PIL de la factura
Returns:
tuple: (words_data, image_width, image_height) o (None, None, None) en caso de error
"""
try:
rgb_image = image.convert("RGB")
img_byte_arr = BytesIO()
rgb_image.save(img_byte_arr, format='JPEG')
img_byte_arr.seek(0)
image_bytes = img_byte_arr.read()
doctr_doc = DocumentFile.from_images([image_bytes])
doctr_result = self.ocr_model(doctr_doc)
if not doctr_result.pages:
return None, None, None
page = doctr_result.pages[0]
words_data = []
for block in page.blocks:
for line in block.lines:
for word in line.words:
text = word.value
geom = np.array(word.geometry) * NORMALIZATION_FACTOR
xmin, ymin = map(int, geom[0])
xmax, ymax = map(int, geom[1])
words_data.append({"text": text, "box": [xmin, ymin, xmax, ymax]})
image_width, image_height = image.size
return words_data, image_width, image_height
except Exception as e:
print(f"Error en OCR: {e}")
return None, None, None
def perform_ner(self, image: Image.Image, words_data: list):
"""
Realiza NER sobre las palabras extraídas.
Args:
image: Imagen PIL
words_data: Lista de diccionarios con 'text' y 'box'
Returns:
list: Predicciones para cada palabra
"""
words = [wd["text"] for wd in words_data]
boxes = [wd["box"] for wd in words_data]
# Preprocesamiento
encoding = self.processor(
image, words, boxes=boxes, max_length=MAX_LENGTH,
truncation=True, padding="max_length", return_tensors="pt"
)
input_ids = encoding["input_ids"].to(self.device)
attention_mask = encoding["attention_mask"].to(self.device)
bbox = encoding["bbox"].to(self.device)
pixel_values = encoding["pixel_values"].to(self.device)
# Inferencia
self.model.eval()
with torch.no_grad():
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
bbox=bbox,
pixel_values=pixel_values
)
predictions = outputs.logits.argmax(dim=-1).squeeze().tolist()
# Mapeo de predicciones a palabras
word_ids = encoding.word_ids()
predictions_final = []
current_word_index = None
for idx, pred_id in enumerate(predictions):
word_idx = word_ids[idx]
if word_idx is not None:
if word_idx != current_word_index:
if len(predictions_final) < len(words):
predictions_final.append(self.model.config.id2label[pred_id])
current_word_index = word_idx
return predictions_final
def group_entities(self, words_data: list, predictions: list):
"""
Agrupa entidades usando el esquema BIO y desduplicación.
Args:
words_data: Lista de palabras con sus bboxes
predictions: Predicciones NER para cada palabra
Returns:
list: Lista de entidades finales con etiqueta, valor y bbox
"""
ner_candidates = {}
current_entity = []
current_label = None
current_bbox_group = []
def save_current_entity(entity_list, label, bbox_list):
if not entity_list or not label:
return
all_x = [b[0] for b in bbox_list] + [b[2] for b in bbox_list]
all_y = [b[1] for b in bbox_list] + [b[3] for b in bbox_list]
bbox_normalized = [min(all_x), min(all_y), max(all_x), max(all_y)]
if label not in ner_candidates:
ner_candidates[label] = []
ner_candidates[label].append({
'valor': " ".join(entity_list),
'bbox_entity': bbox_normalized
})
for word_data, pred_label in zip(words_data, predictions):
word_text = word_data["text"]
word_box = word_data["box"]
tag_parts = pred_label.split('-', 1)
tag_type = tag_parts[0]
root_label = tag_parts[1] if len(tag_parts) > 1 else None
if tag_type == 'B':
save_current_entity(current_entity, current_label, current_bbox_group)
current_label = root_label
current_entity = [word_text]
current_bbox_group = [word_box]
elif tag_type == 'I':
if current_label == root_label:
current_entity.append(word_text)
current_bbox_group.append(word_box)
else:
save_current_entity(current_entity, current_label, current_bbox_group)
current_label = root_label
current_entity = [word_text]
current_bbox_group = [word_box]
elif tag_type == 'O':
save_current_entity(current_entity, current_label, current_bbox_group)
current_entity = []
current_label = None
current_bbox_group = []
save_current_entity(current_entity, current_label, current_bbox_group)
# Desduplicación: seleccionar el valor más largo
final_ner_results = []
for label, candidates in ner_candidates.items():
if not candidates:
continue
sorted_candidates = sorted(candidates, key=lambda x: len(x['valor']), reverse=True)
best_candidate = sorted_candidates[0]
final_ner_results.append({
'etiqueta': label,
'valor': best_candidate['valor'],
'bbox_entity': best_candidate['bbox_entity']
})
return final_ner_results
def draw_annotations(self, image: Image.Image, entities: list):
"""
Dibuja bounding boxes y etiquetas en la imagen.
Args:
image: Imagen PIL original
entities: Lista de entidades con bbox
Returns:
Image: Imagen anotada
"""
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
image_width, image_height = image.size
try:
font = ImageFont.truetype("arial.ttf", 20)
except IOError:
font = ImageFont.load_default()
for entity in entities:
label = entity['etiqueta']
min_x_norm, min_y_norm, max_x_norm, max_y_norm = entity['bbox_entity']
# Desnormalizar coordenadas
min_x = int(min_x_norm * image_width / NORMALIZATION_FACTOR)
min_y = int(min_y_norm * image_height / NORMALIZATION_FACTOR)
max_x = int(max_x_norm * image_width / NORMALIZATION_FACTOR)
max_y = int(max_y_norm * image_height / NORMALIZATION_FACTOR)
color = LABEL2COLOR.get(label, 'yellow')
draw.rectangle([min_x, min_y, max_x, max_y], outline=color, width=3)
draw.text((min_x, min_y - 20), label, fill=color, font=font)
return annotated_image
def process_invoice(self, image: Image.Image, filename: str):
"""
Procesa una factura completa: OCR + NER + visualización + validación.
Args:
image: Imagen PIL de la factura
filename: Nombre del archivo
Returns:
tuple: (filename, annotated_image, table_data, json_data)
"""
# 1. OCR
words_data, image_width, image_height = self.extract_ocr_data(image)
if words_data is None:
return filename, None, [["ERROR", "No se pudo realizar OCR"]], []
if not words_data:
return filename, None, [["ERROR", "No se encontró texto en la imagen"]], []
# Extraer lista de palabras para el validador
ocr_words = [wd["text"] for wd in words_data]
# 2. NER
try:
predictions = self.perform_ner(image, words_data)
except Exception as e:
return filename, None, [["ERROR", f"Error en NER: {e}"]], []
# 3. Agrupar entidades
entities = self.group_entities(words_data, predictions)
# 4. VALIDAR Y CORREGIR ENTIDADES
validated_table, validation_errors = self.validator.validate_and_correct(entities, ocr_words)
# 5. Dibujar anotaciones (solo las entidades detectadas originalmente)
annotated_image = self.draw_annotations(image, entities)
# 6. Preparar resultados
# validated_table ya viene como [etiqueta, valor] (sin columna de validación)
json_data = [
{
'etiqueta': row[0],
'valor': row[1]
}
for row in validated_table
]
return filename, annotated_image, validated_table, json_data |