Spaces:
Sleeping
Sleeping
File size: 27,010 Bytes
98a3af2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
#!/usr/bin/env python3
"""
DEIM Debug Script for Interactive Bbox Detection and Visualization
Copyright (c) 2024 The DEIM Authors. All Rights Reserved.
This script provides interactive debugging capabilities for DEIM models:
- Load model from config and checkpoint
- Process images and videos
- Interactive OpenCV visualization with imshow
- Adjustable confidence thresholds
- Keyboard controls for video playback
"""
import argparse
import os
import sys
import time
from pathlib import Path
import cv2
import torch
import torch.nn as nn
import torchvision.transforms as T
from PIL import Image
# Add the project root to Python path
sys.path.insert(0, str(Path(__file__).parent))
from engine.core import YAMLConfig
# Default class names - will be overridden by dataset configuration
DEFAULT_CLASSES = {
1: 'person', 2: 'bicycle', 3: 'car', 4: 'motorbike', 5: 'aeroplane',
6: 'bus', 7: 'train', 8: 'truck', 9: 'boat', 10: 'trafficlight',
11: 'firehydrant', 13: 'stopsign', 14: 'parkingmeter', 15: 'bench',
16: 'bird', 17: 'cat', 18: 'dog', 19: 'horse', 20: 'sheep',
21: 'cow', 22: 'elephant', 23: 'bear', 24: 'zebra', 25: 'giraffe',
27: 'backpack', 28: 'umbrella', 31: 'handbag', 32: 'tie',
33: 'suitcase', 34: 'frisbee', 35: 'skis', 36: 'snowboard',
37: 'sportsball', 38: 'kite', 39: 'baseballbat', 40: 'baseballglove',
41: 'skateboard', 42: 'surfboard', 43: 'tennisracket', 44: 'bottle',
46: 'wineglass', 47: 'cup', 48: 'fork', 49: 'knife', 50: 'spoon',
51: 'bowl', 52: 'banana', 53: 'apple', 54: 'sandwich', 55: 'orange',
56: 'broccoli', 57: 'carrot', 58: 'hotdog', 59: 'pizza', 60: 'donut',
61: 'cake', 62: 'chair', 63: 'sofa', 64: 'pottedplant', 65: 'bed',
67: 'diningtable', 70: 'toilet', 72: 'tv', 73: 'laptop', 74: 'mouse',
75: 'remote', 76: 'keyboard', 77: 'cellphone', 78: 'microwave',
79: 'oven', 80: 'toaster', 81: 'sink', 82: 'refrigerator', 84: 'book',
85: 'clock', 86: 'vase', 87: 'scissors', 88: 'teddybear',
89: 'hairdrier', 90: 'toothbrush'
}
def load_class_names_from_config(cfg):
"""Load class names from dataset configuration"""
try:
# Import here to avoid circular imports
from engine.data.dataset.coco_dataset import mscoco_category2name
# Check if we can access dataset configuration
if hasattr(cfg, 'val_dataloader') and cfg.val_dataloader is not None:
dataset_cfg = cfg.val_dataloader.dataset
# Try to instantiate dataset to get class names
try:
# Get the number of classes from config
num_classes = getattr(cfg, 'num_classes', 80)
# Check if using COCO remapping
remap_mscoco = getattr(cfg, 'remap_mscoco_category', False)
if remap_mscoco:
print(f"Using COCO class names (remapped)")
return mscoco_category2name
# Try to create dataset instance to get category names
if hasattr(dataset_cfg, 'ann_file') and dataset_cfg.ann_file:
# For COCO-style datasets, try to load annotations
try:
from pycocotools.coco import COCO
if os.path.exists(dataset_cfg.ann_file):
coco = COCO(dataset_cfg.ann_file)
categories = coco.dataset.get('categories', [])
if categories:
class_names = {}
for i, cat in enumerate(categories):
# Use category ID as key for proper mapping
class_names[cat['id']] = cat['name']
print(f"Loaded {len(class_names)} class names from annotation file")
return class_names
except Exception as e:
print(f"Could not load classes from annotation file: {e}")
# Generate generic class names based on number of classes
print(f"Generating generic class names for {num_classes} classes")
if num_classes == 80:
return mscoco_category2name
elif num_classes == 1:
return {1: 'object'}
elif num_classes == 2:
return {1: 'person', 2: 'object'} # Common for crowd detection
elif num_classes == 20:
# VOC classes
voc_classes = {
1: 'aeroplane', 2: 'bicycle', 3: 'bird', 4: 'boat', 5: 'bottle',
6: 'bus', 7: 'car', 8: 'cat', 9: 'chair', 10: 'cow',
11: 'diningtable', 12: 'dog', 13: 'horse', 14: 'motorbike', 15: 'person',
16: 'pottedplant', 17: 'sheep', 18: 'sofa', 19: 'train', 20: 'tvmonitor'
}
return voc_classes
else:
# Generic class names
return {i + 1: f'class_{i + 1}' for i in range(num_classes)}
except Exception as e:
print(f"Could not instantiate dataset: {e}")
except Exception as e:
print(f"Could not load class names from config: {e}")
# Fallback to default COCO classes
print("Using default COCO class names")
return DEFAULT_CLASSES
# Color palette for bounding boxes (BGR format for OpenCV)
COLORS = [
(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255),
(0, 255, 255), (128, 0, 0), (0, 128, 0), (0, 0, 128), (128, 128, 0),
(128, 0, 128), (0, 128, 128), (255, 128, 0), (255, 0, 128), (128, 255, 0),
(0, 255, 128), (128, 0, 255), (0, 128, 255), (192, 192, 192), (64, 64, 64)
]
class DEIMModel(nn.Module):
"""Wrapper for DEIM model with postprocessing"""
def __init__(self, config_path, checkpoint_path, device='cuda', input_size=640):
super().__init__()
self.device = device
config_overrides = {'HGNetv2': {'pretrained': False}}
self.cfg = YAMLConfig(config_path, resume=checkpoint_path, **config_overrides)
print(f"Loading checkpoint from: {checkpoint_path}")
state_dict = torch.load(checkpoint_path, map_location='cpu')['model']
self.cfg.model.load_state_dict(state_dict)
self.model = self.cfg.model.eval().to(device)
self.postprocessor = self.cfg.postprocessor.eval().to(device)
self.class_names = load_class_names_from_config(self.cfg)
self.num_classes = getattr(self.cfg, 'num_classes', len(self.class_names))
print(f"Model loaded successfully on {device}")
print(f"Model type: {type(self.model).__name__}")
print(f"Number of classes: {self.num_classes}")
print(f"Sample classes: {dict(list(self.class_names.items())[:5])}...")
def forward(self, images, orig_sizes):
"""Forward pass through model and postprocessor"""
with torch.no_grad():
outputs = self.model(images)
results = self.postprocessor(outputs, orig_sizes)
return results
def get_class_name(self, class_id):
"""Get class name for given class ID"""
return self.class_names.get(class_id, f'class_{class_id}')
class DebugVisualizer:
"""Interactive visualizer with OpenCV"""
def __init__(self, model, confidence_threshold=0.5, window_name="DEIM Debug"):
self.model = model
self.confidence_threshold = confidence_threshold
self.window_name = window_name
self.paused = False
self.show_info = True
# Create window
cv2.namedWindow(self.window_name, cv2.WINDOW_NORMAL)
cv2.resizeWindow(self.window_name, 1200, 800)
print("\n=== Debug Controls ===")
print("SPACE: Pause/Resume video")
print("'q' or ESC: Quit")
print("'i': Toggle info display")
print("'+'/'-': Increase/Decrease confidence threshold")
print("'s': Save current frame")
print("'n': Next file (in folder mode)")
print("=====================\n")
def draw_detections(self, image, results, frame_info=None):
"""Draw bounding boxes and labels on image"""
vis_image = image.copy()
if len(results) == 0:
return vis_image
# Extract results
result = results[0] if isinstance(results, list) else results
labels = result['labels'].cpu().numpy()
boxes = result['boxes'].cpu().numpy()
scores = result['scores'].cpu().numpy()
# Filter by confidence threshold
valid_indices = scores >= self.confidence_threshold
labels = labels[valid_indices]
boxes = boxes[valid_indices]
scores = scores[valid_indices]
# Draw bounding boxes
for i, (box, label, score) in enumerate(zip(boxes, labels, scores)):
x1, y1, x2, y2 = box.astype(int)
# Get class name and color
class_name = self.model.get_class_name(label)
color = COLORS[label % len(COLORS)]
# Draw bounding box
cv2.rectangle(vis_image, (x1, y1), (x2, y2), color, 2)
# Prepare label text
label_text = f'{class_name}: {score:.2f}'
# Get text size
(text_w, text_h), baseline = cv2.getTextSize(
label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
# Draw label background
cv2.rectangle(vis_image, (x1, y1 - text_h - baseline),
(x1 + text_w, y1), color, -1)
# Draw label text
cv2.putText(vis_image, label_text, (x1, y1 - baseline),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
# Draw info overlay
if self.show_info:
self._draw_info_overlay(vis_image, labels, scores, frame_info)
return vis_image
def _draw_info_overlay(self, image, labels, scores, frame_info=None):
"""Draw information overlay on image"""
h, w = image.shape[:2]
overlay_y = 30
# Detection count and confidence info
info_lines = [
f"Detections: {len(labels)} (conf >= {self.confidence_threshold:.2f})",
f"Avg Confidence: {scores.mean():.3f}" if len(scores) > 0 else "Avg Confidence: N/A"
]
# Add frame info for videos
if frame_info:
info_lines.extend([
f"Frame: {frame_info.get('frame_num', 'N/A')}",
f"FPS: {frame_info.get('fps', 'N/A'):.1f}",
f"Status: {'PAUSED' if self.paused else 'PLAYING'}"
])
# Add file progress if available
if 'file_progress' in frame_info:
info_lines.append(f"File: {frame_info['file_progress']}")
# Draw background
overlay_height = len(info_lines) * 25 + 20
cv2.rectangle(image, (10, 10), (350, 10 + overlay_height),
(0, 0, 0), -1)
cv2.rectangle(image, (10, 10), (350, 10 + overlay_height),
(255, 255, 255), 1)
# Draw text
for i, line in enumerate(info_lines):
cv2.putText(image, line, (20, overlay_y + i * 25),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1)
def show_image(self, image, results, title=None):
"""Display single image with detections"""
vis_image = self.draw_detections(image, results)
if title:
cv2.setWindowTitle(self.window_name, f"{self.window_name} - {title}")
cv2.imshow(self.window_name, vis_image)
# Wait for key press
while True:
key = cv2.waitKey(0) & 0xFF
if key == ord('q') or key == 27: # 'q' or ESC
return False
elif key == ord('n'): # Next file
return True
elif key == ord('s'): # Save image
save_path = f"debug_output_{int(time.time())}.jpg"
cv2.imwrite(save_path, vis_image)
print(f"Image saved as {save_path}")
elif key == ord('i'): # Toggle info
self.show_info = not self.show_info
vis_image = self.draw_detections(image, results)
cv2.imshow(self.window_name, vis_image)
elif key == ord('+') or key == ord('='): # Increase threshold
self.confidence_threshold = min(1.0, self.confidence_threshold + 0.05)
print(f"Confidence threshold: {self.confidence_threshold:.2f}")
vis_image = self.draw_detections(image, results)
cv2.imshow(self.window_name, vis_image)
elif key == ord('-') or key == ord('_'): # Decrease threshold
self.confidence_threshold = max(0.0, self.confidence_threshold - 0.05)
print(f"Confidence threshold: {self.confidence_threshold:.2f}")
vis_image = self.draw_detections(image, results)
cv2.imshow(self.window_name, vis_image)
else:
break
return True
def show_video_frame(self, image, results, frame_info):
"""Display video frame with detections"""
vis_image = self.draw_detections(image, results, frame_info)
cv2.setWindowTitle(self.window_name,
f"{self.window_name} - Frame {frame_info.get('frame_num', 'N/A')}")
cv2.imshow(self.window_name, vis_image)
# Handle keyboard input
wait_time = 1 if self.paused else max(1, int(1000 / frame_info.get('fps', 30)))
key = cv2.waitKey(1) & 0xFF
if key == ord('q') or key == 27: # Quit
return False
elif key == ord('n'): # Next file (skip rest of video)
return 'next'
elif key == ord(' '): # Pause/Resume
self.paused = not self.paused
print("PAUSED" if self.paused else "RESUMED")
elif key == ord('s'): # Save frame
save_path = f"debug_frame_{frame_info.get('frame_num', int(time.time()))}.jpg"
cv2.imwrite(save_path, vis_image)
print(f"Frame saved as {save_path}")
elif key == ord('i'): # Toggle info
self.show_info = not self.show_info
elif key == ord('+') or key == ord('='): # Increase threshold
self.confidence_threshold = min(1.0, self.confidence_threshold + 0.05)
print(f"Confidence threshold: {self.confidence_threshold:.2f}")
elif key == ord('-') or key == ord('_'): # Decrease threshold
self.confidence_threshold = max(0.0, self.confidence_threshold - 0.05)
print(f"Confidence threshold: {self.confidence_threshold:.2f}")
return True
def close(self):
"""Close visualization windows"""
cv2.destroyAllWindows()
def find_media_files(folder_path):
"""Recursively find all image and video files in folder"""
image_extensions = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.tif', '.webp', '.gif'}
video_extensions = {'.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv', '.m4v', '.webm'}
media_files = []
folder_path = Path(folder_path)
if folder_path.is_file():
# Single file provided
if folder_path.suffix.lower() in image_extensions | video_extensions:
media_files.append(folder_path)
else:
# Recursively find all media files
for file_path in folder_path.rglob('*'):
if file_path.is_file() and file_path.suffix.lower() in image_extensions | video_extensions:
media_files.append(file_path)
# Sort files for consistent ordering
media_files.sort()
# Separate images and videos
images = [f for f in media_files if f.suffix.lower() in image_extensions]
videos = [f for f in media_files if f.suffix.lower() in video_extensions]
print(f"Found {len(images)} images and {len(videos)} videos")
return images, videos
def process_image(model, image_path, visualizer, input_size=640, file_index=None, total_files=None):
"""Process single image"""
progress_str = f"[{file_index + 1}/{total_files}] " if file_index is not None else ""
print(f"{progress_str}Processing image: {image_path}")
# Load and preprocess image
image = cv2.imread(str(image_path))
if image is None:
print(f"Error: Could not load image {image_path}")
return False
h, w = image.shape[:2]
orig_size = torch.tensor([[w, h]], dtype=torch.float32).to(model.device)
# Convert to PIL for transforms
pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# Apply transforms
transforms = T.Compose([
T.Resize((input_size, input_size)),
T.ToTensor(),
])
tensor_image = transforms(pil_image).unsqueeze(0).to(model.device)
# Run inference
start_time = time.time()
results = model(tensor_image, orig_size)
inference_time = time.time() - start_time
print(f"Inference time: {inference_time:.3f}s")
# Show results
title = f"{progress_str}{Path(image_path).name} ({inference_time:.3f}s)"
return visualizer.show_image(image, results, title)
def process_video(model, video_path, visualizer, input_size=640, file_index=None, total_files=None):
"""Process video file"""
progress_str = f"[{file_index + 1}/{total_files}] " if file_index is not None else ""
print(f"{progress_str}Processing video: {video_path}")
cap = cv2.VideoCapture(str(video_path))
if not cap.isOpened():
print(f"Error: Could not open video {video_path}")
return False
# Get video properties
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
print(f"Video FPS: {fps:.2f}")
print(f"Total frames: {total_frames}")
# Apply transforms
transforms = T.Compose([
T.Resize((input_size, input_size)),
T.ToTensor(),
])
frame_num = 0
start_time = time.time()
try:
while cap.isOpened():
for _ in range(1):
ret, frame = cap.read()
if not ret:
break
frame_num += 1
h, w = frame.shape[:2]
orig_size = torch.tensor([[w, h]], dtype=torch.float32).to(model.device)
# Convert to PIL for transforms
pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
tensor_frame = transforms(pil_frame).unsqueeze(0).to(model.device)
# Run inference
frame_start = time.time()
results = model(tensor_frame, orig_size)
inference_time = time.time() - frame_start
# Calculate average FPS
elapsed_time = time.time() - start_time
avg_fps = frame_num / elapsed_time if elapsed_time > 0 else 0
# Prepare frame info
frame_info = {
'frame_num': frame_num,
'fps': avg_fps,
'inference_time': inference_time,
'total_frames': total_frames,
'file_progress': f"{progress_str}{Path(video_path).name}"
}
# Show frame
result = visualizer.show_video_frame(frame, results, frame_info)
if result == False:
break
elif result == 'next':
print("Skipping to next file...")
break
# Print progress periodically
if frame_num % 30 == 0:
print(f"Processed {frame_num}/{total_frames} frames, "
f"Avg FPS: {avg_fps:.1f}, "
f"Inference: {inference_time:.3f}s")
finally:
cap.release()
print(f"\nVideo processing completed!")
print(f"Total frames processed: {frame_num}")
print(f"Average FPS: {frame_num / (time.time() - start_time):.2f}")
return True
def process_folder(model, folder_path, visualizer, input_size=640, process_videos=True):
"""Process all images and videos in a folder recursively"""
print(f"Scanning folder: {folder_path}")
# Find all media files
images, videos = find_media_files(folder_path)
if not images and not videos:
print("No image or video files found!")
return False
all_files = []
# Add images first
if images:
print(f"\nFound {len(images)} images:")
for img in images[:10]: # Show first 10
print(f" {img}")
if len(images) > 10:
print(f" ... and {len(images) - 10} more")
all_files.extend([(img, 'image') for img in images])
# Add videos if requested
if videos and process_videos:
print(f"\nFound {len(videos)} videos:")
for vid in videos[:10]: # Show first 10
print(f" {vid}")
if len(videos) > 10:
print(f" ... and {len(videos) - 10} more")
all_files.extend([(vid, 'video') for vid in videos])
elif videos and not process_videos:
print(f"\nSkipping {len(videos)} videos (use --process-videos to include them)")
if not all_files:
print("No files to process!")
return False
print(f"\nProcessing {len(all_files)} files total...")
print("Use SPACE to pause/resume, 'q' to quit, 'n' for next file")
# Process all files
for i, (file_path, file_type) in enumerate(all_files):
print(f"\n{'=' * 60}")
try:
if file_type == 'image':
success = process_image(model, file_path, visualizer, input_size, i, len(all_files))
else: # video
success = process_video(model, file_path, visualizer, input_size, i, len(all_files))
if not success:
print(f"Stopping processing at user request or error")
break
except KeyboardInterrupt:
print(f"\nProcessing interrupted by user")
break
except Exception as e:
print(f"Error processing {file_path}: {e}")
import traceback
traceback.print_exc()
# Ask user if they want to continue
response = input("Continue with next file? (y/n): ")
if response.lower() != 'y':
break
print(f"\nFinished processing folder: {folder_path}")
return True
def main():
parser = argparse.ArgumentParser(description="DEIM Debug Script")
parser.add_argument('-c', '--config', type=str, required=True,
help='Path to config file')
parser.add_argument('-ckpt', '--checkpoint', type=str, required=True,
help='Path to model checkpoint')
parser.add_argument('-i', '--input', type=str, required=True,
help='Path to input image, video, or folder')
parser.add_argument('-d', '--device', type=str, default='cuda',
help='Device to use (cuda/cpu)')
parser.add_argument('--input-size', type=int, default=1600,
help='Input image size')
parser.add_argument('--conf-threshold', type=float, default=0.3,
help='Confidence threshold for detections')
parser.add_argument('--process-videos', action='store_true',
help='Process video files when scanning folders')
parser.add_argument('--images-only', action='store_true',
help='Process only images (skip videos)')
parser.add_argument('--videos-only', action='store_true',
help='Process only videos (skip images)')
args = parser.parse_args()
# Check if files exist
if not os.path.exists(args.config):
print(f"Error: Config file not found: {args.config}")
return
if not os.path.exists(args.checkpoint):
print(f"Error: Checkpoint file not found: {args.checkpoint}")
return
if not os.path.exists(args.input):
print(f"Error: Input file not found: {args.input}")
return
# Check device availability
if args.device == 'cuda' and not torch.cuda.is_available():
print("Warning: CUDA not available, using CPU")
args.device = 'cpu'
print("=== DEIM Debug Script ===")
print(f"Config: {args.config}")
print(f"Checkpoint: {args.checkpoint}")
print(f"Input: {args.input}")
print(f"Device: {args.device}")
print(f"Input size: {args.input_size}")
print(f"Confidence threshold: {args.conf_threshold}")
print("========================\n")
try:
# Initialize model
print("Loading model...")
model = DEIMModel(args.config, args.checkpoint, args.device, args.input_size)
# Initialize visualizer
visualizer = DebugVisualizer(model, args.conf_threshold)
# Determine input type and process
input_path = Path(args.input)
if input_path.is_file():
# Single file
if input_path.suffix.lower() in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.tif', '.webp']:
if not args.videos_only:
success = process_image(model, args.input, visualizer, args.input_size)
else:
print("Skipping image file (videos-only mode)")
success = True
elif input_path.suffix.lower() in ['.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv', '.m4v', '.webm']:
if not args.images_only:
success = process_video(model, args.input, visualizer, args.input_size)
else:
print("Skipping video file (images-only mode)")
success = True
else:
print(f"Error: Unsupported file format: {input_path.suffix}")
success = False
elif input_path.is_dir():
# Folder - process recursively
process_videos = args.process_videos or not args.images_only
if args.videos_only:
# Only process videos, skip images
success = process_folder(model, args.input, visualizer, args.input_size, process_videos=True)
elif args.images_only:
# Only process images, skip videos
success = process_folder(model, args.input, visualizer, args.input_size, process_videos=False)
else:
# Process based on --process-videos flag
success = process_folder(model, args.input, visualizer, args.input_size, process_videos)
else:
print(f"Error: Input path does not exist: {args.input}")
success = False
if success:
print("Processing completed successfully!")
except Exception as e:
print(f"Error during processing: {e}")
import traceback
traceback.print_exc()
finally:
# Cleanup
if 'visualizer' in locals():
visualizer.close()
print("Debug session ended.")
if __name__ == '__main__':
main()
|