Spaces:
Sleeping
Sleeping
File size: 13,050 Bytes
98a3af2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
#!/usr/bin/env python3
"""
Utility functions for pseudolabeling workflow
"""
import json
import argparse
from pathlib import Path
import numpy as np
from typing import Dict, List
import matplotlib.pyplot as plt
from collections import defaultdict
def load_pseudolabels(json_path: str) -> Dict:
"""Load pseudolabeled annotations"""
with open(json_path, 'r') as f:
return json.load(f)
def calculate_statistics(data: Dict) -> Dict:
"""Calculate statistics from pseudolabeled data"""
stats = {
'total_images': len(data['images']),
'total_annotations': len(data['annotations']),
'original_annotations': 0,
'pseudolabeled_annotations': 0,
'verified_annotations': 0,
'confidence_scores': [],
'images_with_annotations': 0,
'images_with_pseudolabels': 0,
'avg_annotations_per_image': 0
}
# Count annotations per image
img_ann_count = defaultdict(int)
img_pseudo_count = defaultdict(int)
for ann in data['annotations']:
# Check if pseudolabel
is_pseudo = ann.get('is_pseudolabel', False)
if is_pseudo:
stats['pseudolabeled_annotations'] += 1
img_pseudo_count[ann['image_id']] += 1
if 'confidence' in ann:
stats['confidence_scores'].append(ann['confidence'])
else:
stats['original_annotations'] += 1
if ann.get('verified', False):
stats['verified_annotations'] += 1
img_ann_count[ann['image_id']] += 1
stats['images_with_annotations'] = len(img_ann_count)
stats['images_with_pseudolabels'] = len(img_pseudo_count)
if stats['images_with_annotations'] > 0:
stats['avg_annotations_per_image'] = sum(img_ann_count.values()) / stats['images_with_annotations']
return stats
def sort_images_by_similarity(progress_file: str, annotations_file: str) -> List:
"""Sort images by their similarity scores"""
# Load progress file
with open(progress_file, 'r') as f:
progress = json.load(f)
# Load annotations
with open(annotations_file, 'r') as f:
data = json.load(f)
# Calculate similarity scores for each image
image_scores = []
for img in data['images']:
img_id = img['id']
# Get annotations for this image
img_anns = [ann for ann in data['annotations'] if ann['image_id'] == img_id]
# Separate by source
original = [ann for ann in img_anns if ann.get('source') == 'original']
predicted = [ann for ann in img_anns if ann.get('source') == 'predicted']
# Calculate a simple similarity metric
if original and predicted:
# Ratio of predicted to original
ratio = len(predicted) / len(original)
# Average score of predictions
avg_score = np.mean([ann.get('score', 0) for ann in predicted])
# Combined metric
similarity = avg_score * min(ratio, 2.0) / 2.0
else:
similarity = 0.0
image_scores.append({
'image_id': img_id,
'file_name': img['file_name'],
'similarity': similarity,
'n_original': len(original),
'n_predicted': len(predicted),
'processed': img_id in progress.get('processed_images', [])
})
# Sort by similarity
image_scores.sort(key=lambda x: x['similarity'], reverse=True)
return image_scores
def merge_annotations(original_file: str, pseudolabel_file: str, output_file: str,
keep_original: bool = True, min_score: float = 0.3):
"""Merge original and pseudolabeled annotations"""
# Load files
with open(original_file, 'r') as f:
original = json.load(f)
with open(pseudolabel_file, 'r') as f:
pseudo = json.load(f)
# Create merged data
merged = {
'info': original.get('info', pseudo.get('info', {})),
'licenses': original.get('licenses', pseudo.get('licenses', [])),
'categories': original.get('categories', pseudo.get('categories', [])),
'images': [],
'annotations': []
}
# Get all unique images
image_ids = set()
image_map = {}
for img in original['images'] + pseudo['images']:
if img['id'] not in image_ids:
image_ids.add(img['id'])
image_map[img['id']] = img
merged['images'].append(img)
# Merge annotations
if keep_original:
# Keep all original annotations
for ann in original['annotations']:
ann['source'] = 'original'
merged['annotations'].append(ann)
# Add pseudolabeled annotations
for ann in pseudo['annotations']:
# Skip if it's an original annotation and we're keeping originals
if keep_original and ann.get('source') == 'original':
continue
# Filter by score
if ann.get('score', 1.0) >= min_score:
merged['annotations'].append(ann)
# Save merged file
with open(output_file, 'w') as f:
json.dump(merged, f, indent=2)
print(f"Merged annotations saved to {output_file}")
print(f"Total images: {len(merged['images'])}")
print(f"Total annotations: {len(merged['annotations'])}")
def visualize_statistics(stats: Dict, output_path: str = None):
"""Create visualization of pseudolabeling statistics"""
fig, axes = plt.subplots(2, 2, figsize=(12, 8))
# Annotations by source
ax = axes[0, 0]
sources = list(stats['annotations_by_source'].keys())
counts = list(stats['annotations_by_source'].values())
ax.bar(sources, counts)
ax.set_title('Annotations by Source')
ax.set_xlabel('Source')
ax.set_ylabel('Count')
# Score distribution
ax = axes[0, 1]
for source, scores in stats['scores_by_source'].items():
if scores and source == 'predicted':
ax.hist(scores, bins=20, alpha=0.7, label=source)
ax.set_title('Score Distribution (Predicted)')
ax.set_xlabel('Score')
ax.set_ylabel('Count')
ax.legend()
# Summary stats
ax = axes[1, 0]
ax.axis('off')
summary_text = f"""
Summary Statistics:
Total Images: {stats['total_images']}
Images with Annotations: {stats['images_with_annotations']}
Total Annotations: {stats['total_annotations']}
Avg Annotations/Image: {stats['avg_annotations_per_image']:.2f}
Original Annotations: {stats['annotations_by_source'].get('original', 0)}
Predicted Annotations: {stats['annotations_by_source'].get('predicted', 0)}
"""
ax.text(0.1, 0.5, summary_text, fontsize=12, verticalalignment='center')
# Pie chart of sources
ax = axes[1, 1]
if counts:
ax.pie(counts, labels=sources, autopct='%1.1f%%')
ax.set_title('Annotation Sources')
plt.tight_layout()
if output_path:
plt.savefig(output_path)
print(f"Statistics plot saved to {output_path}")
else:
plt.show()
def export_for_training(pseudolabel_file: str, output_dir: str,
train_ratio: float = 0.8, min_annotations: int = 1):
"""Export pseudolabeled data in training format"""
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
# Load data
with open(pseudolabel_file, 'r') as f:
data = json.load(f)
# Filter images with minimum annotations
img_ann_count = defaultdict(int)
for ann in data['annotations']:
img_ann_count[ann['image_id']] += 1
valid_images = [img for img in data['images']
if img_ann_count[img['id']] >= min_annotations]
# Split into train/val
n_train = int(len(valid_images) * train_ratio)
np.random.shuffle(valid_images)
train_images = valid_images[:n_train]
val_images = valid_images[n_train:]
train_img_ids = {img['id'] for img in train_images}
val_img_ids = {img['id'] for img in val_images}
# Create train and val datasets
train_data = {
'info': data.get('info', {}),
'licenses': data.get('licenses', []),
'categories': data.get('categories', []),
'images': train_images,
'annotations': [ann for ann in data['annotations']
if ann['image_id'] in train_img_ids]
}
val_data = {
'info': data.get('info', {}),
'licenses': data.get('licenses', []),
'categories': data.get('categories', []),
'images': val_images,
'annotations': [ann for ann in data['annotations']
if ann['image_id'] in val_img_ids]
}
# Save files
with open(output_dir / 'train_pseudo.json', 'w') as f:
json.dump(train_data, f, indent=2)
with open(output_dir / 'val_pseudo.json', 'w') as f:
json.dump(val_data, f, indent=2)
print(f"Training data exported to {output_dir}")
print(f"Train: {len(train_images)} images, {len(train_data['annotations'])} annotations")
print(f"Val: {len(val_images)} images, {len(val_data['annotations'])} annotations")
def main():
parser = argparse.ArgumentParser(description="Pseudolabeling utilities")
subparsers = parser.add_subparsers(dest='command', help='Command to run')
# Stats command
stats_parser = subparsers.add_parser('stats', help='Calculate statistics')
stats_parser.add_argument('--input', required=True, help='Pseudolabeled JSON file')
stats_parser.add_argument('--plot', help='Output path for statistics plot')
# Sort command
sort_parser = subparsers.add_parser('sort', help='Sort images by similarity')
sort_parser.add_argument('--progress', required=True, help='Progress JSON file')
sort_parser.add_argument('--annotations', required=True, help='Annotations JSON file')
sort_parser.add_argument('--output', help='Output file for sorted list')
# Merge command
merge_parser = subparsers.add_parser('merge', help='Merge annotations')
merge_parser.add_argument('--original', required=True, help='Original annotations')
merge_parser.add_argument('--pseudo', required=True, help='Pseudolabeled annotations')
merge_parser.add_argument('--output', required=True, help='Output file')
merge_parser.add_argument('--min-score', type=float, default=0.3, help='Minimum score')
merge_parser.add_argument('--no-original', action='store_true', help='Don\'t keep original')
# Export command
export_parser = subparsers.add_parser('export', help='Export for training')
export_parser.add_argument('--input', required=True, help='Pseudolabeled JSON file')
export_parser.add_argument('--output', required=True, help='Output directory')
export_parser.add_argument('--train-ratio', type=float, default=0.8, help='Train split ratio')
export_parser.add_argument('--min-anns', type=int, default=1, help='Min annotations per image')
args = parser.parse_args()
if args.command == 'stats':
data = load_pseudolabels(args.input)
stats = calculate_statistics(data)
print("\nPseudolabeling Statistics:")
print("-" * 40)
for key, value in stats.items():
if isinstance(value, dict):
print(f"{key}:")
for k, v in value.items():
if isinstance(v, list):
print(f" {k}: {len(v)} items")
else:
print(f" {k}: {v}")
else:
print(f"{key}: {value}")
if args.plot:
visualize_statistics(stats, args.plot)
elif args.command == 'sort':
sorted_images = sort_images_by_similarity(args.progress, args.annotations)
print("\nTop 10 images by similarity:")
print("-" * 60)
for i, img in enumerate(sorted_images[:10]):
print(f"{i+1}. {img['file_name']}: "
f"similarity={img['similarity']:.3f}, "
f"original={img['n_original']}, "
f"predicted={img['n_predicted']}, "
f"processed={img['processed']}")
if args.output:
with open(args.output, 'w') as f:
json.dump(sorted_images, f, indent=2)
print(f"\nSorted list saved to {args.output}")
elif args.command == 'merge':
merge_annotations(
args.original,
args.pseudo,
args.output,
keep_original=not args.no_original,
min_score=args.min_score
)
elif args.command == 'export':
export_for_training(
args.input,
args.output,
train_ratio=args.train_ratio,
min_annotations=args.min_anns
)
else:
parser.print_help()
if __name__ == "__main__":
main()
|