lucid-hf's picture
CI: deploy Docker/PDM Space
98a3af2 verified
import os
import tempfile
import time
from glob import glob
from pathlib import Path
from shutil import which
import streamlit as st
from deim_model import DeimHgnetV2MDrone
from model import *
from PIL import Image
def main():
model = DeimHgnetV2MDrone()
minimum_confidence_threshold = 0.5
st.set_page_config(page_title="SatSense Demo")
st.title(":satellite: SatSense Demo")
st.markdown(
"""
The SatSense demo app simplifies annotating images and videos taken by satellites.
It employs cutting-edge object detection models to automatically analyze and recognize
various objects in satellite imagery, including vehicles and ships.
#### How to get started
1. **Upload Satellite Imagery:** Use the sidebar to upload your satellite imagery media
files for analysis.
2. **Review Identified Objects:** Explore the annotated objects marked by the model.
#### Tips for usage
1. Please clear any existing uploads in the sidebar before uploading a new file.
2. For optimal results, please upload clear and high-resolution satellite media files.
3. [Location SA Map Viewer](https://location.sa.gov.au/viewer/) provides satellite imagery that can be used as image input.
SatSense simplifies the process of annotating satellite imagery and allows you to
export the annotated media files. Start annotating and discovering objects of interest
effortlessly!
***Note:** In its current MVP stage, the SatSense demo offers a glimpse into the
world of automatic object detection in satellite imagery. Your feedback can help shape
its future improvements!*
"""
)
# Sidebar to set minimum confidence threshold
st.sidebar.header("Parameters")
minimum_confidence_threshold = st.sidebar.slider(
"Minimum confidence threshold",
min_value=0.0,
max_value=1.0,
step=0.1,
value=minimum_confidence_threshold,
format="%.1f",
)
st.sidebar.markdown("---")
# Sidebar for image detection
st.sidebar.header("Image Detection")
uploaded_image = st.sidebar.file_uploader(
"Upload an image", type=["jpg", "jpeg", "png"]
)
st.sidebar.markdown("---")
# Sidebar for video detection
st.sidebar.header("Video Detection")
uploaded_video = st.sidebar.file_uploader(
"Upload a video", type=["mp4", "avi", "mov"]
)
if uploaded_image:
st.markdown("---")
st.write("")
st.markdown("#### Uploaded image")
image = Image.open(uploaded_image)
st.image(image, use_column_width=True)
st.write("")
st.write("")
with st.spinner("Processing..."):
annotated_image = model.predict_image(
image, min_confidence=minimum_confidence_threshold
)
st.markdown("#### Annotated image")
st.image(annotated_image, use_column_width=True)
if uploaded_video:
st.markdown("---")
st.write("")
temp_dir = tempfile.mkdtemp()
# Preserve uploaded extension to maximize compatibility with OpenCV/YOLO
uploaded_ext = Path(uploaded_video.name).suffix.lower() or ".mp4"
temp_video_path = os.path.join(temp_dir, f"temp_video{uploaded_ext}")
annotated_dir = "./annotated_video"
os.makedirs(annotated_dir, exist_ok=True)
annotated_video_path_input_ext = os.path.join(
annotated_dir, f"temp_video{uploaded_ext}"
)
annotated_video_path_mp4 = os.path.join(annotated_dir, "temp_video.mp4")
st.markdown("#### Uploaded video")
uploaded_video_bytes = uploaded_video.getvalue()
st.video(uploaded_video_bytes)
st.write("")
st.write("")
progress_bar = st.progress(0.3, text="Performing object detection...")
with open(temp_video_path, "wb") as video_file:
video_file.write(uploaded_video.getvalue())
model.predict_video(
temp_video_path,
min_confidence=minimum_confidence_threshold,
target_dir_name="annotated_video",
)
# Resolve the actual saved annotated video. Ultralytics may write .avi even if input is .mp4
final_video_path = None
preferred_candidates = [
annotated_video_path_input_ext,
os.path.join(annotated_dir, "temp_video.mp4"),
os.path.join(annotated_dir, "temp_video.avi"),
]
for cand in preferred_candidates:
if os.path.exists(cand):
final_video_path = cand
break
if final_video_path is None:
candidates = []
for pattern in ("*.mp4", "*.avi", "*.mov", "*.mkv", "*.webm"):
candidates.extend(glob(os.path.join(annotated_dir, pattern)))
if candidates:
final_video_path = max(candidates, key=os.path.getmtime)
else:
progress_bar.empty()
st.error(
"Annotated video not found after detection. Please try again or check logs."
)
return
# If the annotated output isn't mp4, try converting with ffmpeg if available
if Path(final_video_path).suffix.lower() != ".mp4":
progress_bar.progress(0.67, text="Converting video format...")
if which("ffmpeg"):
import subprocess
try:
subprocess.run(
[
"ffmpeg",
"-y",
"-i",
final_video_path,
"-c:v",
"libx264",
"-pix_fmt",
"yuv420p",
"-crf",
"23",
"-preset",
"veryfast",
"-an",
annotated_video_path_mp4,
],
check=True,
stdout=subprocess.DEVNULL,
stderr=subprocess.STDOUT,
)
final_video_path = annotated_video_path_mp4
except Exception:
st.warning(
"ffmpeg failed to convert the video. Attempting to display original format."
)
else:
st.info(
"Install ffmpeg to enable conversion to mp4 (e.g. `brew install ffmpeg` on macOS) or use the provided Dockerfile."
)
progress_bar.progress(1.0, text="Done!")
time.sleep(1)
progress_bar.empty()
st.markdown("#### Annotated video")
annotated_video_file = open(final_video_path, "rb")
annotated_video_bytes = annotated_video_file.read()
# Let Streamlit infer format from the file when possible
st.video(annotated_video_bytes)
st.markdown("---")
st.markdown("Demo built by [Lucid Insights Pty Ltd](https://lucidinsights.com.au).")
if __name__ == "__main__":
main()