Spaces:
Sleeping
Sleeping
| # retriever.py | |
| from typing import Any, Dict, List | |
| import torch | |
| from langchain.tools.retriever import create_retriever_tool | |
| class MultiModalRetriever: | |
| """ | |
| Enhanced retrieval system that integrates text, image, and code snippet search. | |
| """ | |
| def __init__(self, text_retriever: Any, clip_model: Any, clip_processor: Any) -> None: | |
| self.text_retriever = text_retriever | |
| self.clip_model = clip_model | |
| self.clip_processor = clip_processor | |
| self.code_retriever = create_retriever_tool([], "Code Retriever", "Retriever for code snippets") | |
| def retrieve(self, query: str, domain: str) -> Dict[str, List]: | |
| return { | |
| "text": self._retrieve_text(query), | |
| "images": self._retrieve_images(query), | |
| "code": self._retrieve_code(query) | |
| } | |
| def _retrieve_text(self, query: str) -> List[Any]: | |
| return self.text_retriever.invoke(query) | |
| def _retrieve_images(self, query: str) -> List[str]: | |
| inputs = self.clip_processor(text=query, return_tensors="pt") | |
| with torch.no_grad(): | |
| _ = self.clip_model.get_text_features(**inputs) | |
| # Placeholder for image retrieval results | |
| return ["image_result_1.png", "image_result_2.png"] | |
| def _retrieve_code(self, query: str) -> List[str]: | |
| return self.code_retriever.invoke(query) | |