File size: 9,669 Bytes
e954cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
"""

Prediction Heads for Genesis RNA



Multi-task prediction heads for:

1. Masked Language Modeling (MLM)

2. Secondary structure prediction

3. Base-pair prediction

"""

import torch
import torch.nn as nn
from typing import Optional


class MLMHead(nn.Module):
    """

    Masked Language Modeling (MLM) head.



    Predicts masked nucleotide tokens from hidden states.

    Similar to BERT's MLM head architecture.



    Architecture:

        Hidden → Dense → GELU → LayerNorm → Output projection → Vocab logits

    """

    def __init__(self, d_model: int, vocab_size: int):
        """

        Args:

            d_model: Hidden dimension size

            vocab_size: Size of token vocabulary

        """
        super().__init__()
        self.dense = nn.Linear(d_model, d_model)
        self.activation = nn.GELU()
        self.layer_norm = nn.LayerNorm(d_model)
        self.decoder = nn.Linear(d_model, vocab_size)

        # Initialize weights
        self._init_weights()

    def _init_weights(self):
        """Initialize layer weights"""
        nn.init.normal_(self.dense.weight, std=0.02)
        nn.init.zeros_(self.dense.bias)
        nn.init.normal_(self.decoder.weight, std=0.02)
        nn.init.zeros_(self.decoder.bias)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        """

        Args:

            hidden_states: Encoder outputs [batch_size, seq_len, d_model]



        Returns:

            Logits over vocabulary [batch_size, seq_len, vocab_size]

        """
        x = self.dense(hidden_states)
        x = self.activation(x)
        x = self.layer_norm(x)
        logits = self.decoder(x)
        return logits


class StructureHead(nn.Module):
    """

    Secondary structure prediction head.



    Predicts RNA secondary structure type for each position:

    - NONE (unpaired)

    - STEM (base-paired helix)

    - LOOP (hairpin loop)

    - BULGE (bulge/internal loop)

    - HAIRPIN (hairpin loop)



    This is a token-level classification task.

    """

    def __init__(self, d_model: int, num_labels: int):
        """

        Args:

            d_model: Hidden dimension size

            num_labels: Number of structure types (default: 5)

        """
        super().__init__()
        self.dropout = nn.Dropout(0.1)
        self.classifier = nn.Linear(d_model, num_labels)

        # Initialize weights
        self._init_weights()

    def _init_weights(self):
        """Initialize layer weights"""
        nn.init.normal_(self.classifier.weight, std=0.02)
        nn.init.zeros_(self.classifier.bias)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        """

        Args:

            hidden_states: Encoder outputs [batch_size, seq_len, d_model]



        Returns:

            Structure logits [batch_size, seq_len, num_labels]

        """
        x = self.dropout(hidden_states)
        logits = self.classifier(x)
        return logits


class PairHead(nn.Module):
    """

    Base-pair prediction head.



    Predicts which positions form base pairs (Watson-Crick or wobble pairs).

    Uses a bilinear scoring function to compute pair probabilities.



    Output is a symmetric matrix where entry (i, j) represents the

    probability that positions i and j form a base pair.

    """

    def __init__(self, d_model: int, hidden_dim: Optional[int] = None):
        """

        Args:

            d_model: Hidden dimension size

            hidden_dim: Intermediate projection dimension (default: d_model)

        """
        super().__init__()
        if hidden_dim is None:
            hidden_dim = d_model

        # Project hidden states for pairing scores
        self.proj_left = nn.Linear(d_model, hidden_dim, bias=False)
        self.proj_right = nn.Linear(d_model, hidden_dim, bias=False)

        # Optional: add a learned scaling factor
        self.scale = nn.Parameter(torch.ones(1))

        # Initialize weights
        self._init_weights()

    def _init_weights(self):
        """Initialize layer weights"""
        nn.init.normal_(self.proj_left.weight, std=0.02)
        nn.init.normal_(self.proj_right.weight, std=0.02)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        """

        Args:

            hidden_states: Encoder outputs [batch_size, seq_len, d_model]



        Returns:

            Pair logits [batch_size, seq_len, seq_len]

            Entry (b, i, j) is the score for position i pairing with position j

        """
        # Project hidden states
        h_left = self.proj_left(hidden_states)   # [B, L, H]
        h_right = self.proj_right(hidden_states)  # [B, L, H]

        # Compute bilinear pairing scores: h_left @ h_right^T
        # This gives a matrix where entry (i,j) = h_left[i] · h_right[j]
        pair_scores = torch.matmul(h_left, h_right.transpose(-2, -1))  # [B, L, L]

        # Apply scaling
        pair_scores = pair_scores * self.scale

        # Optionally symmetrize (since base pairing is symmetric)
        # pair_scores = (pair_scores + pair_scores.transpose(-2, -1)) / 2

        return pair_scores


class ContactMapHead(nn.Module):
    """

    Alternative contact map prediction head using outer product.



    This head is more parameter-efficient than PairHead and explicitly

    constructs pairwise features via outer product.

    """

    def __init__(self, d_model: int):
        """

        Args:

            d_model: Hidden dimension size

        """
        super().__init__()

        # Reduce dimension for efficiency
        self.proj = nn.Linear(d_model, d_model // 4)
        self.activation = nn.ReLU()

        # Final classifier for pair
        self.classifier = nn.Linear(1, 1)

        # Initialize weights
        self._init_weights()

    def _init_weights(self):
        """Initialize layer weights"""
        nn.init.normal_(self.proj.weight, std=0.02)
        nn.init.zeros_(self.proj.bias)
        nn.init.normal_(self.classifier.weight, std=0.02)
        nn.init.zeros_(self.classifier.bias)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        """

        Args:

            hidden_states: Encoder outputs [batch_size, seq_len, d_model]



        Returns:

            Contact map logits [batch_size, seq_len, seq_len]

        """
        batch_size, seq_len, d_model = hidden_states.size()

        # Project to lower dimension
        h = self.proj(hidden_states)  # [B, L, d//4]
        h = self.activation(h)

        # Compute outer product for all pairs
        # h[i] * h[j] gives pairwise features
        h_i = h.unsqueeze(2)  # [B, L, 1, d//4]
        h_j = h.unsqueeze(1)  # [B, 1, L, d//4]

        # Element-wise product
        pairwise = h_i * h_j  # [B, L, L, d//4]

        # Reduce to scalar score per pair
        contact_scores = pairwise.sum(dim=-1, keepdim=True)  # [B, L, L, 1]
        contact_scores = self.classifier(contact_scores)      # [B, L, L, 1]
        contact_scores = contact_scores.squeeze(-1)           # [B, L, L]

        return contact_scores


class MutationEffectHead(nn.Module):
    """

    Mutation effect prediction head (for fine-tuning).



    Predicts the effect of mutations on RNA function, stability, or binding.

    Can be used for:

    - Fitness prediction

    - Stability change (ΔΔG)

    - Binding affinity change



    This is typically a sequence-level regression task.

    """

    def __init__(self, d_model: int, pooling: str = "mean"):
        """

        Args:

            d_model: Hidden dimension size

            pooling: How to pool sequence representations ("mean", "max", "cls")

        """
        super().__init__()
        self.pooling = pooling

        self.regressor = nn.Sequential(
            nn.Linear(d_model, d_model // 2),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(d_model // 2, 1),
        )

        # Initialize weights
        self._init_weights()

    def _init_weights(self):
        """Initialize layer weights"""
        for module in self.regressor.modules():
            if isinstance(module, nn.Linear):
                nn.init.normal_(module.weight, std=0.02)
                nn.init.zeros_(module.bias)

    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None

    ) -> torch.Tensor:
        """

        Args:

            hidden_states: Encoder outputs [batch_size, seq_len, d_model]

            attention_mask: Binary mask [batch_size, seq_len]



        Returns:

            Effect predictions [batch_size, 1]

        """
        # Pool sequence representation
        if self.pooling == "mean":
            if attention_mask is not None:
                # Masked mean pooling
                mask_expanded = attention_mask.unsqueeze(-1).float()
                summed = (hidden_states * mask_expanded).sum(dim=1)
                pooled = summed / mask_expanded.sum(dim=1).clamp(min=1e-9)
            else:
                pooled = hidden_states.mean(dim=1)

        elif self.pooling == "max":
            pooled = hidden_states.max(dim=1)[0]

        elif self.pooling == "cls":
            # Use [CLS] token (first position)
            pooled = hidden_states[:, 0, :]

        else:
            raise ValueError(f"Unknown pooling method: {self.pooling}")

        # Predict effect
        effect = self.regressor(pooled)
        return effect