tarnava commited on
Commit
80f696c
·
verified ·
1 Parent(s): 4185120

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -59
app.py CHANGED
@@ -1,70 +1,69 @@
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
 
 
 
4
 
5
- def respond(
6
- message,
7
- history: list[dict[str, str]],
8
- system_message,
9
- max_tokens,
10
- temperature,
11
- top_p,
12
- hf_token: gr.OAuthToken,
13
- ):
14
- """
15
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
16
- """
17
- client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
18
 
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- messages.extend(history)
22
-
23
- messages.append({"role": "user", "content": message})
24
-
25
- response = ""
26
-
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
31
- temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- choices = message.choices
35
- token = ""
36
- if len(choices) and choices[0].delta.content:
37
- token = choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- chatbot = gr.ChatInterface(
47
- respond,
48
- type="messages",
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
- ],
61
- )
62
 
 
63
  with gr.Blocks() as demo:
64
- with gr.Sidebar():
65
- gr.LoginButton()
66
- chatbot.render()
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
- if __name__ == "__main__":
70
- demo.launch()
 
1
+ import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ from peft import PeftModel
4
  import gradio as gr
 
5
 
6
+ # --- Models Load (CPU ke liye optimized) ---
7
+ BASE_MODEL = "Qwen/Qwen2.5-1.5B"
8
+ LORA_ADAPTER = "modular-ai/qwen"
9
 
10
+ print("Loading base model on CPU... (ye 1-2 min lagega pehli baar)")
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ base_model = AutoModelForCausalLM.from_pretrained(
13
+ BASE_MODEL,
14
+ torch_dtype=torch.float32, # CPU pe float16 nahi chalta
15
+ device_map="cpu", # Sirf CPU
16
+ trust_remote_code=True,
17
+ low_cpu_mem_usage=True # Memory bachaye
18
+ )
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
+ print("Loading LoRA adapter...")
21
+ model = PeftModel.from_pretrained(base_model, LORA_ADAPTER)
22
 
23
+ tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
24
+ if tokenizer.pad_token is None:
25
+ tokenizer.pad_token = tokenizer.eos_token
26
 
27
+ # --- Chat Function (Fast & Safe) ---
28
+ def ask_kant(message, history):
29
+ prompt = f"### Instruction: You are Immanuel Kant.\n\n### Input: {message}\n\n### Response:"
30
+ inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
31
+
32
+ with torch.no_grad():
33
+ output = model.generate(
34
+ **inputs,
35
+ max_new_tokens=200,
36
+ temperature=0.7,
37
+ do_sample=True,
38
+ top_p=0.9,
39
+ repetition_penalty=1.1,
40
+ pad_token_id=tokenizer.eos_token_id
41
+ )
42
+
43
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
44
+ bot_reply = response.split("### Response:")[-1].strip()
45
+ return bot_reply
46
 
47
+ # --- Gradio UI (Simple & Fast) ---
48
  with gr.Blocks() as demo:
49
+ gr.Markdown("# 🧠 **Kant AI** – Qwen2.5-1.5B LoRA")
50
+ gr.Markdown("**Zero GPU | Free | Live Demo** \nPoochein koi bhi sawal, *Immanuel Kant* jawab denge!")
 
51
 
52
+ chatbot = gr.ChatInterface(
53
+ fn=ask_kant,
54
+ title="",
55
+ examples=[
56
+ "What is freedom?",
57
+ "Kya hai swatantrata?",
58
+ "Explain categorical imperative",
59
+ "Moral law kya hai?"
60
+ ],
61
+ cache_examples=False,
62
+ submit_btn="Ask Kant",
63
+ retry_btn=None,
64
+ clear_btn="Clear"
65
+ )
66
+
67
+ gr.Markdown("---\n*Model: Qwen2.5-1.5B + LoRA | CPU Only | ~8-12 sec per reply*")
68
 
69
+ demo.launch()