Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,70 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from huggingface_hub import InferenceClient
|
| 3 |
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
message,
|
| 7 |
-
history: list[dict[str, str]],
|
| 8 |
-
system_message,
|
| 9 |
-
max_tokens,
|
| 10 |
-
temperature,
|
| 11 |
-
top_p,
|
| 12 |
-
hf_token: gr.OAuthToken,
|
| 13 |
-
):
|
| 14 |
-
"""
|
| 15 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 16 |
-
"""
|
| 17 |
-
client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
for message in client.chat_completion(
|
| 28 |
-
messages,
|
| 29 |
-
max_tokens=max_tokens,
|
| 30 |
-
stream=True,
|
| 31 |
-
temperature=temperature,
|
| 32 |
-
top_p=top_p,
|
| 33 |
-
):
|
| 34 |
-
choices = message.choices
|
| 35 |
-
token = ""
|
| 36 |
-
if len(choices) and choices[0].delta.content:
|
| 37 |
-
token = choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
""
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
]
|
| 61 |
-
|
| 62 |
|
|
|
|
| 63 |
with gr.Blocks() as demo:
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
chatbot.render()
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
|
| 70 |
-
demo.launch()
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
from peft import PeftModel
|
| 4 |
import gradio as gr
|
|
|
|
| 5 |
|
| 6 |
+
# --- Models Load (CPU ke liye optimized) ---
|
| 7 |
+
BASE_MODEL = "Qwen/Qwen2.5-1.5B"
|
| 8 |
+
LORA_ADAPTER = "modular-ai/qwen"
|
| 9 |
|
| 10 |
+
print("Loading base model on CPU... (ye 1-2 min lagega pehli baar)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
+
BASE_MODEL,
|
| 14 |
+
torch_dtype=torch.float32, # CPU pe float16 nahi chalta
|
| 15 |
+
device_map="cpu", # Sirf CPU
|
| 16 |
+
trust_remote_code=True,
|
| 17 |
+
low_cpu_mem_usage=True # Memory bachaye
|
| 18 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
print("Loading LoRA adapter...")
|
| 21 |
+
model = PeftModel.from_pretrained(base_model, LORA_ADAPTER)
|
| 22 |
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
| 24 |
+
if tokenizer.pad_token is None:
|
| 25 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 26 |
|
| 27 |
+
# --- Chat Function (Fast & Safe) ---
|
| 28 |
+
def ask_kant(message, history):
|
| 29 |
+
prompt = f"### Instruction: You are Immanuel Kant.\n\n### Input: {message}\n\n### Response:"
|
| 30 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 31 |
+
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
output = model.generate(
|
| 34 |
+
**inputs,
|
| 35 |
+
max_new_tokens=200,
|
| 36 |
+
temperature=0.7,
|
| 37 |
+
do_sample=True,
|
| 38 |
+
top_p=0.9,
|
| 39 |
+
repetition_penalty=1.1,
|
| 40 |
+
pad_token_id=tokenizer.eos_token_id
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 44 |
+
bot_reply = response.split("### Response:")[-1].strip()
|
| 45 |
+
return bot_reply
|
| 46 |
|
| 47 |
+
# --- Gradio UI (Simple & Fast) ---
|
| 48 |
with gr.Blocks() as demo:
|
| 49 |
+
gr.Markdown("# 🧠 **Kant AI** – Qwen2.5-1.5B LoRA")
|
| 50 |
+
gr.Markdown("**Zero GPU | Free | Live Demo** \nPoochein koi bhi sawal, *Immanuel Kant* jawab denge!")
|
|
|
|
| 51 |
|
| 52 |
+
chatbot = gr.ChatInterface(
|
| 53 |
+
fn=ask_kant,
|
| 54 |
+
title="",
|
| 55 |
+
examples=[
|
| 56 |
+
"What is freedom?",
|
| 57 |
+
"Kya hai swatantrata?",
|
| 58 |
+
"Explain categorical imperative",
|
| 59 |
+
"Moral law kya hai?"
|
| 60 |
+
],
|
| 61 |
+
cache_examples=False,
|
| 62 |
+
submit_btn="Ask Kant",
|
| 63 |
+
retry_btn=None,
|
| 64 |
+
clear_btn="Clear"
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
gr.Markdown("---\n*Model: Qwen2.5-1.5B + LoRA | CPU Only | ~8-12 sec per reply*")
|
| 68 |
|
| 69 |
+
demo.launch()
|
|
|