File size: 28,670 Bytes
6e07610 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
# app.py
import gradio as gr
import json
import os
import uuid
import time
from datetime import datetime
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from dotenv import load_dotenv
# ChromaDB imports
import chromadb
from chromadb.utils import embedding_functions
from sentence_transformers import SentenceTransformer
load_dotenv()
MODEL_PATH = "./current_model"
FEEDBACK_FILE = "feedback.json"
HF_DATASET_REPO = os.getenv("HF_DATASET_REPO", "modular-ai/rlhf_feedback_dataset")
HF_MODEL_REPO = os.getenv("HF_MODEL_REPO", "modular-ai/kantian-critic-qwen") # For versioned model uploads
# BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct" # Smaller 0.5B model (~1GB) instead of full Qwen
BASE_MODEL = "modular-ai/qwen"
# Kantian Persona Configuration
KANTIAN_PERSONA_NAME = "Kantian"
KANTIAN_DESCRIPTION = "Principled moral critic who challenges consequentialist reasoning"
KANTIAN_TRAITS = ["duty_focused", "universality_tester", "moral_consistency_seeker", "rights_defender"]
KANTIAN_SYSTEM_PROMPT = f"""You are an ADVERSARIAL CRITIC whose job is to challenge and test arguments. You are the user's intellectual opponent, not their supporter.
ADVERSARIAL MODE:
1. Challenge the document's arguments systematically.
2. Be critically rigorous - identify flaws and weaknesses.
3. Quote exact text when making critiques.
4. Attack logical fallacies and poor reasoning directly.
5. Your goal: Test arguments through adversarial analysis, not validate them.
CRITICAL FRAMEWORK:
- Test whether proposed actions can be universalized without contradiction
- Challenge reasoning that treats people merely as means to ends
- Question arguments that prioritize outcomes over moral duty
- Identify violations of the categorical imperative
- Expose moral inconsistencies and contradictions
- Be intellectually honest - acknowledge strength only when absolutely warranted
RESPOND IN FIRST PERSON - USE 'I' NOT 'ME' - MAINTAIN KANTIAN STYLE: DIRECT, SPECIFIC, NO EXPLANATIONS, CONCISE
NEVER MENTION 'USER' OR 'YOU' - CRITIQUE THE ARGUMENTS DIRECTLY
STAY IN CHARACTER - NEVER BREAK ROLE - ALWAYS RESPOND AS KANTIAN CRITIC"""
# Initialize ChromaDB client
chroma_client = chromadb.PersistentClient(path="./chroma_db")
# Store active collections and their last access times
active_collections = {}
def create_document_collection(document_text: str) -> str:
"""Create a new ChromaDB collection for a document and split into chunks"""
# Generate unique collection name
collection_id = f"doc_{uuid.uuid4().hex}"
# Create collection
collection = chroma_client.create_collection(name=collection_id)
# Split document into chunks (roughly 500 words each)
words = document_text.split()
chunks = []
chunk_size = 500
for i in range(0, len(words), chunk_size):
chunk = ' '.join(words[i:i + chunk_size])
chunks.append(chunk)
# Add chunks to collection with metadata
if chunks:
ids = [f"chunk_{i}" for i in range(len(chunks))]
collection.add(
documents=chunks,
ids=ids
)
# Track collection
active_collections[collection_id] = {
"collection": collection,
"last_access": time.time(),
"chunks": len(chunks)
}
print(f"Created collection {collection_id} with {len(chunks)} chunks")
return collection_id
def delete_document_collection(collection_id: str) -> str:
"""Delete a ChromaDB collection"""
if collection_id in active_collections:
try:
chroma_client.delete_collection(name=collection_id)
del active_collections[collection_id]
return f"Collection {collection_id} deleted successfully"
except Exception as e:
return f"Error deleting collection: {str(e)}"
return f"Collection {collection_id} not found"
def delete_old_collections(max_age_hours: float = 2.0) -> str:
"""Delete collections that haven't been accessed in max_age_hours"""
current_time = time.time()
deleted_collections = []
for collection_id, collection_data in list(active_collections.items()):
last_access = collection_data["last_access"]
age_hours = (current_time - last_access) / 3600
if age_hours > max_age_hours:
try:
chroma_client.delete_collection(name=collection_id)
del active_collections[collection_id]
deleted_collections.append(collection_id)
print(f"Deleted old collection: {collection_id}")
except Exception as e:
print(f"Error deleting old collection {collection_id}: {e}")
if deleted_collections:
return f"Deleted {len(deleted_collections)} old collections: {', '.join(deleted_collections)}"
return "No old collections to delete"
def retrieve_relevant_chunks(collection_id: str, query: str, n_results: int = 3) -> list:
"""Retrieve relevant chunks from a document collection"""
if collection_id not in active_collections:
return []
# Update last access time
active_collections[collection_id]["last_access"] = time.time()
try:
collection = active_collections[collection_id]["collection"]
results = collection.query(
query_texts=[query],
n_results=n_results
)
return results['documents'][0] if results['documents'] else []
except Exception as e:
print(f"Error retrieving chunks: {e}")
return []
def load_model():
global model, tokenizer
# Detect device
if torch.cuda.is_available():
device = "cuda"
dtype = torch.float16
elif torch.backends.mps.is_available():
device = "mps"
dtype = torch.float32 # MPS doesn't fully support float16
else:
device = "cpu"
dtype = torch.float32
print(f"Using device: {device}")
try:
if os.path.exists(MODEL_PATH):
print(f"Loading fine-tuned model from {MODEL_PATH}")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH)
else:
print(f"Loading base model: {BASE_MODEL}")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, trust_remote_code=True)
# Set padding token if not exists
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.eval()
model = model.to(device)
print(f"Model loaded successfully on {device}")
except Exception as e:
print(f"Error loading model: {e}")
raise
def count_tokens(text: str) -> int:
"""Estimate token count for text"""
if tokenizer is None:
# Rough estimate: ~4 chars per token
return len(text) // 4
try:
return len(tokenizer.encode(text))
except:
return len(text) // 4
def summarize_conversation(history: list, document: str = "") -> str:
"""Summarize conversation history to compress context"""
if not history:
return ""
print(f"[SUMMARIZE] Summarizing {len(history)} exchanges...")
# Build summary prompt
conversation_text = ""
for user_msg, bot_msg in history:
conversation_text += f"User: {user_msg}\nKantian: {bot_msg}\n\n"
summary_prompt = f"""Summarize this Kantian critique conversation, preserving:
1. Key moral arguments discussed
2. Main weaknesses identified
3. Critical Kantian principles applied
4. Important quotes and references
5. Deontological issues raised
Conversation:
{conversation_text}
Concise summary (keep important details):"""
try:
summary = generate_response(summary_prompt, conversation_history=[])
print(f"[SUMMARIZE] Generated summary: {len(summary)} chars")
return summary
except Exception as e:
print(f"[SUMMARIZE] Error: {e}")
# Fallback: simple truncation
return f"Previous discussion covered: {conversation_text[:500]}..."
def generate_response(prompt: str, conversation_history = None, summary: str = "") -> str:
if model is None or tokenizer is None:
load_model()
# Validate model and tokenizer are loaded
if model is None or tokenizer is None:
return "Error: Model failed to load. Please check configuration."
# Handle None conversation_history
if conversation_history is None:
conversation_history = []
try:
# Get model device
device = next(model.parameters()).device
# Use maximum context window available (your specified 32768)
max_model_length = 32768
print(f"[GENERATE] Max tokens: {max_model_length}")
# Build conversation context with history
conversation_context = KANTIAN_SYSTEM_PROMPT + "\n\n"
# Add summary if exists
if summary:
conversation_context += f"Previous conversation summary:\n{summary}\n\n"
# Add recent history (but we're not using history now)
if conversation_history:
for user_msg, bot_msg in conversation_history[-1:]: # Only last exchange if any
conversation_context += f"User: {user_msg}\nKantian: {bot_msg}\n\n"
# Add current prompt
full_prompt = conversation_context + f"User: {prompt}\nKantian:"
# Count tokens in full prompt
prompt_tokens = count_tokens(full_prompt)
print(f"[TOKENS] Prompt tokens: {prompt_tokens}")
# Use full context without truncation (within model limits)
max_input_length = max_model_length - 1000 # Reserve more tokens for response
inputs = tokenizer(full_prompt, return_tensors="pt", truncation=True, max_length=max_input_length)
input_tokens_count = inputs['input_ids'].shape[1]
print(f"[TOKENS] Input tokens (after tokenizer): {input_tokens_count}")
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=500, # ULTRA SHORT responses only
do_sample=True,
temperature=0.8,
top_p=0.92,
pad_token_id=tokenizer.eos_token_id,
repetition_penalty=1.2, # Penalize repetition
no_repeat_ngram_size=3, # Prevent 3-gram repetition
early_stopping=True, # Stop early when possible
length_penalty=0.1 # Discourage overly long responses
)
# Count output tokens
output_tokens_count = outputs[0].shape[0] - inputs['input_ids'].shape[1]
print(f"[TOKENS] Output tokens: {output_tokens_count}")
print(f"[TOKENS] Total tokens used: {input_tokens_count + output_tokens_count}")
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True).strip()
return response
except Exception as e:
print(f"Error generating response: {e}")
return f"Error generating response: {str(e)}"
def save_feedback(prompt: str, response: str, reward: int, text_feedback: str = ""):
entry = {
"prompt": prompt,
"response": response,
"reward": reward,
"text_feedback": text_feedback, # New field for detailed feedback
"timestamp": datetime.now().isoformat()
}
if os.path.exists(FEEDBACK_FILE):
try:
with open(FEEDBACK_FILE, "r") as f:
content = f.read().strip()
data = json.loads(content) if content else []
except (json.JSONDecodeError, ValueError):
data = []
else:
data = []
data.append(entry)
with open(FEEDBACK_FILE, "w") as f:
json.dump(data, f, indent=2)
return f"Feedback saved! Total: {len(data)}"
# Gradio Interface
with gr.Blocks(title="Kantian Adversarial Critic - RLHF Training", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# βοΈ Kantian Adversarial Critic
### AI-Powered Moral Philosophy Critique with Continuous Learning
Upload your document and receive rigorous moral critique from a Kantian perspective.
The AI will challenge your arguments, identify weaknesses, and test moral consistency.
"""
)
with gr.Accordion("π How to Use", open=False):
gr.Markdown(
"""
**Step 1:** Upload your document (.txt, .md, .docx) or paste text
**Step 2:** Click "Load Document" to prepare for critique
**Step 3:** Ask questions like:
- "Challenge this argument systematically"
- "What are the fatal flaws?"
- "Can this be universalized?"
- "Does this treat people as mere means?"
**Step 4:** Rate the critique quality to help the AI improve!
β οΈ **This AI is adversarial** - it will challenge your work, not validate it.
"""
)
gr.Markdown("---")
gr.Markdown("## π Step 1: Upload Your Document")
# Document upload section with better layout
with gr.Row():
with gr.Column(scale=1):
doc_upload = gr.File(
label="π Upload File",
file_types=['.txt', '.md', '.docx'],
type="filepath",
interactive=True
)
upload_btn = gr.Button("π₯ Load Document", variant="primary", size="lg")
delete_btn = gr.Button("ποΈ Delete Document Collection", variant="secondary", size="lg")
# Hidden state for collection ID
collection_state = gr.State(None)
with gr.Column(scale=1):
doc_text = gr.Textbox(
label="βοΈ Or Paste Your Text",
placeholder="Paste your document here and click 'Load Document'...",
lines=8,
max_lines=15
)
doc_status = gr.Textbox(
label="π Document Status",
interactive=False,
placeholder="No document loaded yet",
show_label=True
)
gr.Markdown("---")
# Chat interface with improved layout
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
height=450,
label="π£οΈ Kantian Critique Conversation",
bubble_full_width=False,
show_label=True,
avatar_images=(
None, # User avatar
"https://upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Immanuel_Kant_%28painted_portrait%29.jpg/220px-Immanuel_Kant_%28painted_portrait%29.jpg" # Kant avatar
)
)
prompt_box = gr.Textbox(
label="β Ask for Critique",
placeholder="e.g., 'Challenge this systematically', 'What are the fatal flaws?', 'Can this be universalized?'",
lines=2,
max_lines=4,
show_label=True
)
with gr.Row():
send_btn = gr.Button("βοΈ Send", variant="primary", size="lg")
clear_btn = gr.Button("π§Ή Clear Chat", size="lg")
with gr.Column(scale=1):
gr.Markdown("## π Rate Critique Quality")
with gr.Row():
like_btn = gr.Button("π Strong Critique", variant="secondary", size="lg")
dislike_btn = gr.Button("π Weak Critique", variant="secondary", size="lg")
feedback_text = gr.Textbox(
label="π Detailed Feedback (Optional)",
placeholder="How can this critique be improved? Be specific...",
lines=3,
max_lines=5,
show_label=True
)
submit_feedback_btn = gr.Button("π€ Submit Detailed Feedback", variant="primary", size="lg")
status = gr.Textbox(
label="π Feedback Status",
interactive=False,
placeholder="Your feedback will appear here...",
show_label=True
)
with gr.Accordion("βΉοΈ About This AI", open=False):
gr.Markdown(
"""
**Kantian Adversarial Critic**
- Tests universalizability
- Identifies moral inconsistencies
- Challenges consequentialist reasoning
- Attacks logical fallacies
- Quotes text directly
**Personality Traits:**
π― Duty-focused π Universality-tester
βοΈ Consistency-seeker π‘οΈ Rights-defender
"""
)
# State: stores (chat_history, document_content, conversation_summary)
state = gr.State([])
doc_state = gr.State("")
summary_state = gr.State("") # Stores conversation summary
def load_document(file_path, pasted_text):
"""Load document from file or text area and create ChromaDB collection"""
content = ""
collection_id = None
if pasted_text.strip():
content = pasted_text.strip()
status_msg = f"Document loaded from text area ({len(content)} characters)"
elif file_path:
try:
# Handle different file types
if file_path.endswith('.txt') or file_path.endswith('.md'):
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
elif file_path.endswith('.pdf'):
try:
import PyPDF2
with open(file_path, 'rb') as f:
pdf_reader = PyPDF2.PdfReader(f)
content = ''
for page in pdf_reader.pages:
content += page.extract_text() + '\n'
except ImportError:
status_msg = "PDF support requires pypdf2 library. Install with: pip install pypdf2"
return "", status_msg, None
elif file_path.endswith('.docx'):
try:
from docx import Document
doc = Document(file_path)
content = '\n'.join([paragraph.text for paragraph in doc.paragraphs])
except ImportError:
status_msg = "DOCX support requires python-docx library. Install with: pip install python-docx"
return "", status_msg, None
else:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
status_msg = f"Document loaded from file ({len(content)} characters)"
except Exception as e:
status_msg = f"Error loading file: {str(e)}"
return "", status_msg, None
else:
status_msg = "Please upload a file or paste text"
return "", status_msg, None
# Create ChromaDB collection for this document
if content:
try:
collection_id = create_document_collection(content)
status_msg += f" | Collection ID: {collection_id}"
except Exception as e:
status_msg += f" | ChromaDB error: {str(e)}"
return content, status_msg, collection_id
def respond(message, history, chat_state, document, current_summary, collection_id):
"""Generate adversarial Kantian critique with no conversation history"""
print(f"\n[RESPOND] Received message: {message[:100]}...")
print(f"[RESPOND] Document present: {bool(document)}")
print(f"[RESPOND] Collection ID: {collection_id}")
if not document or not collection_id:
bot_response = "Please upload a document first so I can mount an adversarial critique."
# Always start fresh - no conversation history
new_chat_state = [(message, bot_response)]
return "", history + [[message, bot_response]], new_chat_state, "", collection_id
# Retrieve relevant document chunks using RAG
relevant_chunks = retrieve_relevant_chunks(collection_id, message, n_results=3)
context_document = "\n\n".join(relevant_chunks) if relevant_chunks else document[:2000] + ("..." if len(document) > 2000 else "")
print("[RESPOND] Starting critique generation...")
# Create context-aware prompt for adversarial critique (NO conversation history)
# ENFORCED BREVITY: Request short, focused critique
critique_prompt = f"""Document context (relevant sections):
{context_document}
User request: {message}
Provide DIRECT, FOCUSED adversarial criticism (3 sentences MAX):
1. ONE flaw
2. ONE quote
3. ONE principle
RESPOND AS KANTIAN CRITIC - USE 'I' NOT 'USER' - MAINTAIN CHARACTER - NO EXPLANATIONS - NO REPETITION - BE CONCISE"""
print("[RESPOND] Calling generate_response WITHOUT conversation history...")
# Pass EMPTY conversation history - each message is standalone
bot_response = generate_response(critique_prompt, conversation_history=[], summary="")
print(f"[RESPOND] Got response: {bot_response[:100]}...")
# Return fresh state with only this exchange
new_chat_state = [(message, bot_response)]
return "", history + [[message, bot_response]], new_chat_state, "", collection_id
def like_action(chat_state, document, current_summary):
"""Save positive feedback with document context (standalone)"""
if chat_state and document:
# Get the last (and only) exchange
if len(chat_state) > 0:
prompt, response = chat_state[-1]
# Include document snippet in feedback for better training
doc_snippet = document[:500] + "..." if len(document) > 500 else document
full_prompt = f"Document: {doc_snippet}\n\nQuestion: {prompt}"
return save_feedback(full_prompt, response, 1, ""), ""
return "No critique to rate or no document loaded.", ""
def dislike_action(chat_state, document, current_summary):
"""Save negative feedback with document context (standalone)"""
if chat_state and document:
# Get the last (and only) exchange
if len(chat_state) > 0:
prompt, response = chat_state[-1]
# Include document snippet in feedback for better training
doc_snippet = document[:500] + "..." if len(document) > 500 else document
full_prompt = f"Document: {doc_snippet}\n\nQuestion: {prompt}"
return save_feedback(full_prompt, response, 0, ""), ""
return "No critique to rate or no document loaded.", ""
def text_feedback_action(chat_state, document, current_summary, feedback_text):
"""Save detailed text feedback with document context (standalone)"""
if chat_state and document and feedback_text.strip():
# Get the last (and only) exchange
if len(chat_state) > 0:
prompt, response = chat_state[-1]
# Include document snippet in feedback for better training
doc_snippet = document[:500] + "..." if len(document) > 500 else document
full_prompt = f"Document: {doc_snippet}\n\nQuestion: {prompt}"
# Save with neutral reward but include text feedback
return save_feedback(full_prompt, response, 1, feedback_text.strip()), ""
return "No critique to rate, no document loaded, or no feedback provided.", ""
def clear_chat():
# Reset ALL state including document state
return [], [], "", "", None # Clear chat, state, summary, document, collection_id
def delete_collection(collection_id):
"""Delete the current document collection"""
if collection_id:
result = delete_document_collection(collection_id)
return result, None, [], [], "", ""
return "No collection to delete", None, [], [], "", ""
# Event handlers
upload_btn.click(load_document, [doc_upload, doc_text], [doc_state, doc_status, collection_state])
send_btn.click(respond, [prompt_box, chatbot, state, doc_state, summary_state, collection_state], [prompt_box, chatbot, state, summary_state, collection_state])
prompt_box.submit(respond, [prompt_box, chatbot, state, doc_state, summary_state, collection_state], [prompt_box, chatbot, state, summary_state, collection_state])
like_btn.click(like_action, [state, doc_state, summary_state], [status, summary_state])
dislike_btn.click(dislike_action, [state, doc_state, summary_state], [status, summary_state])
submit_feedback_btn.click(text_feedback_action, [state, doc_state, summary_state, feedback_text], [status, summary_state])
clear_btn.click(clear_chat, outputs=[chatbot, state, summary_state, doc_state, collection_state])
delete_btn.click(delete_collection, collection_state, [doc_status, collection_state, chatbot, state, summary_state, doc_state])
if __name__ == "__main__":
import threading
import time
import subprocess
# Background training worker
def background_worker():
last_count = 0
last_sync = 0
REWARD_THRESHOLD = 50
PPO_THRESHOLD = 100
CHECK_INTERVAL = 300 # 5 min
SYNC_INTERVAL = 600 # 10 min
while True:
time.sleep(CHECK_INTERVAL)
if not os.path.exists(FEEDBACK_FILE):
continue
try:
with open(FEEDBACK_FILE, "r") as f:
content = f.read().strip()
data = json.loads(content) if content else []
count = len(data)
if count > last_count:
print(f"New feedback: {count - last_count} β Total: {count}")
last_count = count
# Sync to HF
if time.time() - last_sync > SYNC_INTERVAL:
try:
from data_sync import sync_to_hub
sync_to_hub()
last_sync = time.time()
except Exception as e:
print(f"Sync error: {e}")
# Train reward model
# Check if we've crossed the threshold for the first time
if count >= REWARD_THRESHOLD and last_count < REWARD_THRESHOLD:
print("\n" + "="*50)
print(f"Training reward model with {count} samples...")
print("="*50)
subprocess.run("python train_reward.py", shell=True)
print("β Reward model training complete")
print("="*50 + "\n")
# Train PPO
# Check if we've crossed the threshold for the first time
if count >= PPO_THRESHOLD and last_count < PPO_THRESHOLD:
print("\n" + "="*50)
print(f"Running PPO fine-tuning with {count} samples...")
print("="*50)
subprocess.run("python train_ppo.py", shell=True)
load_model() # Reload fine-tuned model
print("β PPO fine-tuning complete - model reloaded")
print("β New version pushed to Hugging Face")
print("="*50 + "\n")
except Exception as e:
print(f"Background worker error: {e}")
# Start background worker thread
print("Starting background training worker...")
thread = threading.Thread(target=background_worker, daemon=True)
thread.start()
# Load model and launch
load_model()
print("Launching Gradio UI with auto-training enabled...")
demo.launch(server_name="0.0.0.0", server_port=7860, share=False) |