File size: 6,015 Bytes
6e07610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# train_ppo.py
import json
import torch
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead, create_reference_model
from transformers import AutoTokenizer
from datasets import Dataset
from reward_model_loader import load_reward_pipeline
from huggingface_hub import login, HfApi
import os
import shutil
from datetime import datetime
from dotenv import load_dotenv

load_dotenv()
FEEDBACK_FILE = "feedback.json"
MODEL_PATH = "./current_model"
PPO_OUTPUT = "./ppo_model_temp"
REWARD_PATH = "./reward_model"
HF_TOKEN = os.getenv("HF_TOKEN")
HF_MODEL_REPO = os.getenv("HF_MODEL_REPO", "modular-ai/kantian-critic-qwen")
# BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct"  # Smaller 0.5B model
BASE_MODEL = "modular-ai/qwen"
# Kantian System Prompt for PPO training
KANTIAN_SYSTEM_PROMPT = """You are Kantian - an ADVERSARIAL CRITIC whose job is to challenge and test arguments.

ADVERSARIAL MODE:
1. Challenge the document's arguments systematically.
2. Be critically rigorous - identify flaws and weaknesses.
3. Quote exact text when making critiques.
4. Attack logical fallacies and poor reasoning directly.
5. Your goal: Test arguments through adversarial analysis, not validate them.

Apply Kantian framework: universalizability, human dignity, moral duty over consequences.
"""

# Load data
if not os.path.exists(FEEDBACK_FILE):
    print("No data.")
    exit()

with open(FEEDBACK_FILE, "r") as f:
    data = json.load(f)

if len(data) < 100:
    print(f"Need 100+ samples. Current: {len(data)}")
    exit()

# Use recent prompts (Kantian critique contexts)
# Include text feedback for better training signal
prompts_data = data[-64:]  # Batch-friendly
prompts = []
for d in prompts_data:
    # Extract just the user question part if it exists
    prompt_text = d["prompt"]
    text_feedback = d.get("text_feedback", "")
    
    if "Question:" in prompt_text:
        # Extract the question part for Kantian critique generation
        question = prompt_text.split("Question:")[-1].strip()
        # Prepend Kantian context and feedback if available
        if text_feedback:
            prompts.append(f"{KANTIAN_SYSTEM_PROMPT}\n\nFeedback Context: {text_feedback}\n\n{question}")
        else:
            prompts.append(f"{KANTIAN_SYSTEM_PROMPT}\n{question}")
    else:
        if text_feedback:
            prompts.append(f"{KANTIAN_SYSTEM_PROMPT}\n\nFeedback Context: {text_feedback}\n\n{prompt_text}")
        else:
            prompts.append(f"{KANTIAN_SYSTEM_PROMPT}\n{prompt_text}")

dataset = Dataset.from_dict({"prompt": prompts})

# Load reward model
reward_pipe = load_reward_pipeline(REWARD_PATH)

# Load base model
base_model_path = MODEL_PATH if os.path.exists(MODEL_PATH) else BASE_MODEL
print(f"Loading base model: {base_model_path}")
tokenizer = AutoTokenizer.from_pretrained(base_model_path, trust_remote_code=True)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

model = AutoModelForCausalLMWithValueHead.from_pretrained(base_model_path, trust_remote_code=True)
ref_model = create_reference_model(model)

config = PPOConfig(
    model_name=base_model_path,
    learning_rate=1.41e-5,
    batch_size=8,
    mini_batch_size=4,
    gradient_accumulation_steps=1,
    ppo_epochs=3,
)

ppo_trainer = PPOTrainer(
    config=config,
    model=model,
    ref_model=ref_model,
    tokenizer=tokenizer,
    dataset=dataset,
)

generation_kwargs = {
    "max_new_tokens": 100,
    "do_sample": True,
    "temperature": 0.7,
    "top_p": 0.9,
    "pad_token_id": tokenizer.eos_token_id
}

print("Starting PPO training...")
for batch in ppo_trainer.dataloader:
    query_tensors = batch["input_ids"]

    response_tensors = ppo_trainer.generate(query_tensors, **generation_kwargs)
    responses = [tokenizer.decode(r, skip_special_tokens=True) for r in response_tensors]

    # Compute rewards
    texts = [f"Prompt: {p} Response: {r}" for p, r in zip(batch["prompt"], responses)]
    pipe_outputs = reward_pipe(texts)
    rewards = []
    for out in pipe_outputs:
        pos_score = next((s["score"] for s in out if s["label"] == "LABEL_1"), 0.0)
        neg_score = next((s["score"] for s in out if s["label"] == "LABEL_0"), 0.0)
        reward = pos_score - neg_score
        rewards.append(torch.tensor(reward))

    ppo_trainer.step(query_tensors, response_tensors, rewards)

ppo_trainer.save_model(PPO_OUTPUT)
if os.path.exists(MODEL_PATH):
    shutil.rmtree(MODEL_PATH)
os.rename(PPO_OUTPUT, MODEL_PATH)
print(f"PPO model updated at {MODEL_PATH}")

# Push to Hugging Face with version tag
if HF_TOKEN:
    try:
        login(token=HF_TOKEN)
        api = HfApi()
        
        # Create version tag based on timestamp and sample count
        timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
        version_tag = f"v-{len(data)}-samples-{timestamp}"
        
        print(f"\nPushing fine-tuned model to Hugging Face as version: {version_tag}")
        print(f"Repository: {HF_MODEL_REPO}")
        
        # Push model to HF Hub (creates new commit while preserving old versions)
        api.upload_folder(
            folder_path=MODEL_PATH,
            repo_id=HF_MODEL_REPO,
            commit_message=f"PPO fine-tuned on {len(data)} samples - {timestamp}",
            repo_type="model",
        )
        
        # Add tags for versioning
        try:
            api.update_repo_settings(
                repo_id=HF_MODEL_REPO,
                tags=[version_tag, f"samples-{len(data)}", "ppo", "kantian-critic", "qwen"],
            )
        except:
            pass  # Tags update might fail on some repos, non-critical
        
        print(f"✓ Model pushed to {HF_MODEL_REPO}")
        print(f"  Version tag: {version_tag}")
        print(f"  All previous versions remain accessible via commit history")
        print(f"  Access at: https://huggingface.co/{HF_MODEL_REPO}")
    except Exception as e:
        print(f"Warning: Could not push to Hugging Face: {e}")
else:
    print("Warning: HF_TOKEN not set, skipping model upload")