# reward_model_loader.py from transformers import pipeline import torch def load_reward_pipeline(model_path="./reward_model"): # Determine device if torch.cuda.is_available(): device = 0 elif torch.backends.mps.is_available(): device = "mps" else: device = -1 # CPU return pipeline( "text-classification", model=model_path, return_all_scores=True, device=device )