Spaces:
Sleeping
Sleeping
File size: 6,961 Bytes
435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 fa1621b 435b1b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# ------------------------๐ง ENVIRONMENT SETUP ------------------------
import os
os.environ["TRANSFORMERS_CACHE"] = "./hf_cache"
import streamlit as st
from transformers import pipeline
from streamlit_lottie import st_lottie
import requests
import datetime
import pandas as pd
# ------------------------๐๏ธ LOAD LOTTIE ANIMATION ------------------------
def load_lottieurl(url):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
lottie_animation = load_lottieurl("https://assets2.lottiefiles.com/packages/lf20_w51pcehl.json")
# ------------------------๐ APP TITLE & HEADER ------------------------
st.markdown("<h1 style='text-align: center;'>๐ Text Summarization App</h1>", unsafe_allow_html=True)
st_lottie(lottie_animation, height=250, key="header_anim")
# ------------------------๐ LOAD SUMMARIZATION MODELS ------------------------
@st.cache_resource(show_spinner="๐ Loading summarization model...")
def load_summarizer(model_name):
return pipeline("summarization", model=model_name)
model_map = {
"BART": "facebook/bart-large-cnn",
"T5": "t5-small",
"PEGASUS": "google/pegasus-cnn_dailymail"
}
model_choice = st.selectbox("๐ Choose Summarization Model", list(model_map.keys()))
summarizer = load_summarizer(model_map[model_choice])
# ------------------------๐ ๏ธ USER INPUT & CONTROLS ------------------------
mode = st.radio("๐ค Choose Output Mode:", ["Paragraph", "Bullet Points", "Custom"], horizontal=True)
col1, col2 = st.columns(2)
with col1:
st.markdown("### โ๏ธ Enter Text or Upload File")
uploaded_file = st.file_uploader("๐ Upload .txt file", type=["txt"])
if uploaded_file is not None:
user_input = uploaded_file.read().decode("utf-8")
st.text_area("๐ Uploaded Text Preview", value=user_input, height=200)
else:
user_input = st.text_area("", height=300, placeholder="Paste your job description, article, or any long-form text here...")
word_count = len(user_input.split())
st.markdown(f"**๐งฎ {word_count} words**")
# ๐ง Summary length control
if mode != "Custom":
length_label = st.radio("๐ Summary Length", ["Short", "Medium"], horizontal=True)
min_len = 40
max_len = 150 if length_label == "Short" else 300
else:
st.markdown("### ๐๏ธ Customize Summary Length")
min_len = st.slider("Minimum Length", 20, 200, 50)
max_len = st.slider("Maximum Length", 100, 500, 200)
# โจ Generate Summary
if st.button("โจ Summarize", use_container_width=True):
if not user_input.strip():
st.warning("โ ๏ธ Please enter text to summarize.")
else:
with st.spinner("๐ Generating your summary... hang tight! โณ"):
try:
result = summarizer(user_input, max_length=max_len, min_length=min_len, do_sample=False)
summary = result[0]['summary_text']
if mode == "Bullet Points":
summary = "โข " + summary.replace(". ", ".\nโข ")
st.session_state["summary"] = summary
except Exception as e:
st.error(f"โ ๏ธ Error during summarization: {e}")
# ------------------------๐ SUMMARY OUTPUT & HISTORY ------------------------
with col2:
st.markdown("### ๐ Summary Output")
if "summary" in st.session_state:
st.success(st.session_state["summary"])
summary_words = len(st.session_state["summary"].split())
st.markdown(f"๐ {summary_words} words")
# ๐ฅ Download Summary as TXT
st.download_button(
label="๐ฅ Download This Summary (TXT)",
data=st.session_state["summary"],
file_name="summary.txt",
mime="text/plain"
)
# ๐พ Save to Summary History
with st.expander("๐พ Save & View Summary History"):
if st.button("โ
Save this summary to history"):
try:
with open("summary_history.txt", "a", encoding="utf-8") as f:
f.write("\n" + "="*50 + "\n")
f.write(f"๐ Timestamp: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
f.write(f"๐น Model Used: {model_choice}\n")
f.write(f"๐ธ Mode: {mode}\n")
f.write(f"๐ Original Text:\n{user_input.strip()}\n\n")
f.write(f"โ
Summary:\n{st.session_state['summary'].strip()}\n")
f.write("="*50 + "\n\n")
st.success("๐ Summary saved to history!")
except Exception as e:
st.error(f"โ Failed to save summary: {e}")
# ๐ View Summary History
if st.checkbox("๐ Show Summary History"):
try:
with open("summary_history.txt", "r", encoding="utf-8") as f:
history = f.read()
st.text_area("๐๏ธ Summary History", value=history, height=300)
except FileNotFoundError:
st.info("โน๏ธ No history found yet.")
# ๐ Export as CSV
if st.button("โฌ๏ธ Export History as CSV"):
try:
summaries = []
with open("summary_history.txt", "r", encoding="utf-8") as f:
lines = f.read().split("="*50)
for entry in lines:
if "๐ Timestamp" in entry:
lines_dict = {
"Timestamp": entry.split("๐ Timestamp: ")[1].split("\n")[0].strip(),
"Model": entry.split("๐น Model Used: ")[1].split("\n")[0].strip(),
"Mode": entry.split("๐ธ Mode: ")[1].split("\n")[0].strip(),
"Original_Text": entry.split("๐ Original Text:\n")[1].split("\n\n")[0].strip(),
"Summary": entry.split("โ
Summary:\n")[1].strip()
}
summaries.append(lines_dict)
df = pd.DataFrame(summaries)
csv = df.to_csv(index=False).encode('utf-8')
st.download_button("๐ Download CSV File", csv, "summary_history.csv", "text/csv")
except Exception as e:
st.error(f"โ Failed to export as CSV: {e}")
else:
st.info("โน๏ธ Your summary will appear here once generated.")
# ------------------------๐ FOOTER ------------------------
st.markdown("<hr>", unsafe_allow_html=True)
st.markdown(
"<small>๐ Built by <b>MULA VAMSHI๐ค</b> using Hugging Face Transformers, Streamlit & Lottie</small>",
unsafe_allow_html=True
)
|