cx_ai_agent_v1 / services /llm_service.py
muzakkirhussain011's picture
Add application files (text files only)
8bab08d
"""
LLM Service for Grounded Summarization
Provides fact-based summarization with strict grounding to prevent hallucination
"""
import os
import logging
from typing import Dict, List, Optional
logger = logging.getLogger(__name__)
class LLMService:
"""
LLM Service with grounding support
Provides two modes:
1. API Mode: Uses Anthropic Claude API if ANTHROPIC_API_KEY is available
2. Fact-Based Mode: Uses structured fact extraction (no hallucination)
"""
def __init__(self):
self.api_key = os.getenv("ANTHROPIC_API_KEY")
self.use_api = bool(self.api_key)
if self.use_api:
try:
import anthropic
self.client = anthropic.Anthropic(api_key=self.api_key)
logger.info("LLM Service initialized with Anthropic Claude API")
except ImportError:
logger.warning("anthropic package not installed, falling back to fact-based mode")
self.use_api = False
else:
logger.info("LLM Service initialized in fact-based mode (no API key)")
async def generate_grounded_summary(
self,
company_name: str,
extracted_data: Dict,
raw_facts: List[str],
summary_type: str = "client"
) -> str:
"""
Generate a summary strictly grounded in extracted facts
Args:
company_name: Name of the company
extracted_data: Structured data extracted from research
raw_facts: List of raw text facts for grounding
summary_type: "client" or "prospect"
Returns:
Grounded summary string
"""
if self.use_api:
return await self._api_based_summary(company_name, extracted_data, raw_facts, summary_type)
else:
return self._fact_based_summary(company_name, extracted_data, summary_type)
async def _api_based_summary(
self,
company_name: str,
extracted_data: Dict,
raw_facts: List[str],
summary_type: str
) -> str:
"""
Use Claude API to generate summary with strict grounding
"""
# Prepare grounding context
facts_context = "\n".join(f"- {fact}" for fact in raw_facts[:50]) # Limit to 50 facts
# Structure the extracted data
structured_data = self._format_structured_data(extracted_data)
prompt = f"""You are a business research analyst creating a factual summary of {company_name}.
CRITICAL RULES:
1. ONLY use information from the FACTS and STRUCTURED DATA provided below
2. DO NOT make up or infer ANY information not explicitly stated
3. If information is missing, state "Information not available"
4. Use direct quotes and facts from the provided data
5. Be comprehensive but strictly factual
STRUCTURED DATA EXTRACTED:
{structured_data}
RAW FACTS FROM RESEARCH:
{facts_context}
Create a comprehensive 3-4 paragraph summary of {company_name} that:
1. Describes what they do and their main offerings
2. Explains their value proposition and key benefits
3. Identifies their target customers and market position
4. Includes relevant facts (founded, size, funding, competitors) if available
Summary must be factual, well-structured, and grounded ONLY in the provided data."""
try:
message = self.client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
temperature=0, # Zero temperature for factual consistency
messages=[
{"role": "user", "content": prompt}
]
)
summary = message.content[0].text
logger.info(f"Generated API-based summary for {company_name} ({len(summary)} chars)")
return summary
except Exception as e:
logger.error(f"API summarization failed: {e}, falling back to fact-based")
return self._fact_based_summary(company_name, extracted_data, summary_type)
def _fact_based_summary(
self,
company_name: str,
extracted_data: Dict,
summary_type: str
) -> str:
"""
Generate fact-based summary without LLM (no hallucination possible)
"""
summary_parts = []
# Part 1: Company Overview
overview = f"**{company_name}**"
if extracted_data.get('description'):
overview += f" - {extracted_data['description']}"
elif extracted_data.get('industry'):
overview += f" is a company in the {extracted_data['industry']} industry"
if extracted_data.get('website'):
overview += f" (Website: {extracted_data['website']})"
summary_parts.append(overview + ".")
# Part 2: Company Background
background_facts = []
if extracted_data.get('founded'):
background_facts.append(f"founded in {extracted_data['founded']}")
if extracted_data.get('company_size'):
background_facts.append(f"with {extracted_data['company_size']}")
if extracted_data.get('funding'):
background_facts.append(f"having raised {extracted_data['funding']}")
if background_facts:
summary_parts.append("The company was " + ", ".join(background_facts) + ".")
# Part 3: Offerings and Features
offerings_text = ""
if extracted_data.get('offerings'):
offerings = extracted_data['offerings'][:3] # Top 3
if offerings:
offerings_text = f"They offer: {'; '.join(offerings)}."
if extracted_data.get('key_features'):
features = extracted_data['key_features'][:4] # Top 4
if features:
if offerings_text:
offerings_text += f" Key features include: {'; '.join(features)}."
else:
offerings_text = f"Key features include: {'; '.join(features)}."
if offerings_text:
summary_parts.append(offerings_text)
# Part 4: Value Propositions
if extracted_data.get('value_propositions'):
value_props = extracted_data['value_propositions'][:3] # Top 3
if value_props:
summary_parts.append(f"Their value propositions are: {'; '.join(value_props)}.")
# Part 5: Target Customers
if extracted_data.get('target_customers'):
customers = extracted_data['target_customers'][:2] # Top 2
if customers:
summary_parts.append(f"They serve: {'; '.join(customers)}.")
# Part 6: Use Cases
if extracted_data.get('use_cases'):
use_cases = extracted_data['use_cases'][:2] # Top 2
if use_cases:
summary_parts.append(f"Common use cases: {'; '.join(use_cases)}.")
# Part 7: Pricing
if extracted_data.get('pricing_model'):
summary_parts.append(f"Pricing: {extracted_data['pricing_model']}.")
# Part 8: Competitive Landscape
if extracted_data.get('competitors'):
competitors = extracted_data['competitors'][:3] # Top 3
if competitors:
summary_parts.append(f"Main competitors include: {', '.join(competitors)}.")
# Part 9: Differentiators
if extracted_data.get('differentiators'):
diffs = extracted_data['differentiators'][:2] # Top 2
if diffs:
summary_parts.append(f"What sets them apart: {'; '.join(diffs)}.")
# Combine all parts
full_summary = " ".join(summary_parts)
# Add data quality note
facts_count = len(extracted_data.get('raw_facts', []))
full_summary += f"\n\n*Note: This summary is based on {facts_count} facts extracted from web research. All information is grounded in actual data with no inferences or hallucinations.*"
logger.info(f"Generated fact-based summary for {company_name} ({len(full_summary)} chars, {facts_count} facts)")
return full_summary
def _format_structured_data(self, data: Dict) -> str:
"""Format extracted data for API prompt - ENHANCED with new fields"""
lines = []
# Basic Info
if data.get('name'):
lines.append(f"Name: {data['name']}")
if data.get('website'):
lines.append(f"Website: {data['website']}")
if data.get('industry'):
lines.append(f"Industry: {data['industry']}")
# Company Background
if data.get('founded'):
lines.append(f"Founded: {data['founded']}")
if data.get('company_size'):
lines.append(f"Company Size: {data['company_size']}")
if data.get('funding'):
lines.append(f"Funding: {data['funding']}")
if data.get('market_position'):
lines.append(f"Market Position: {data['market_position'][:150]}")
# Product/Service Info
if data.get('offerings'):
lines.append(f"Offerings: {', '.join(data['offerings'][:5])}")
if data.get('key_features'):
lines.append(f"Key Features: {', '.join(data['key_features'][:6])}")
if data.get('integrations'):
lines.append(f"Integrations: {', '.join(data['integrations'][:5])}")
if data.get('pricing_model'):
lines.append(f"Pricing: {data['pricing_model'][:150]}")
# Marketing & Positioning
if data.get('value_propositions'):
lines.append(f"Value Propositions: {', '.join(data['value_propositions'][:3])}")
if data.get('target_customers'):
lines.append(f"Target Customers: {', '.join(data['target_customers'][:3])}")
if data.get('use_cases'):
lines.append(f"Use Cases: {', '.join(data['use_cases'][:3])}")
# Competitive & Market
if data.get('competitors'):
lines.append(f"Competitors: {', '.join(data['competitors'][:5])}")
if data.get('awards'):
lines.append(f"Awards & Recognition: {', '.join(data['awards'][:3])}")
# Credibility & Proof
if data.get('customer_testimonials'):
lines.append(f"Customer Success Stories: {len(data['customer_testimonials'])} testimonials")
if data.get('recent_news'):
lines.append(f"Recent News: {', '.join(data['recent_news'][:3])}")
return "\n".join(lines)
# Singleton instance
_llm_service: Optional[LLMService] = None
def get_llm_service() -> LLMService:
"""Get or create LLM service instance"""
global _llm_service
if _llm_service is None:
_llm_service = LLMService()
return _llm_service