File size: 7,493 Bytes
830a558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import hydra
import torch
from omegaconf import DictConfig, OmegaConf
from physicsnemo.distributed import DistributedManager
from physicsnemo.launch.logging import LaunchLogger, PythonLogger
from physicsnemo.sym.hydra import to_absolute_path
from torch.nn.parallel import DistributedDataParallel
from torch.optim import AdamW
import time

from dataloaders import Dedalus2DDataset, MHDDataloaderVecPot
from losses import LossMHDVecPot_PhysicsNeMo
from tfno import TFNO
from utils.plot_utils import plot_predictions_mhd, plot_predictions_mhd_plotly

dtype = torch.float
torch.set_default_dtype(dtype)


@hydra.main(
    version_base="1.3", config_path="config", config_name="eval_mhd_vec_pot_tfno.yaml"
)
def main(cfg: DictConfig) -> None:
    DistributedManager.initialize()  # Only call this once in the entire script!
    dist = DistributedManager()  # call if required elsewhere
    cfg = OmegaConf.to_container(cfg, resolve=True)
    # initialize monitoring
    log = PythonLogger(name="mhd_pino")
    log.file_logging()
    # Load config file parameters
    model_params = cfg["model_params"]
    dataset_params = cfg["dataset_params"]
    test_loader_params = cfg["test_loader_params"]
    loss_params = cfg["loss_params"]
    optimizer_params = cfg["optimizer_params"]

    output_dir = cfg["output_dir"]
    test_params = cfg["test"]
    load_checkpoint = cfg.get("load_ckpt", False)

    output_dir = to_absolute_path(output_dir)
    os.makedirs(output_dir, exist_ok=True)

    data_dir = dataset_params["data_dir"]

    # Construct dataloaders
    dataset_test = Dedalus2DDataset(
        data_dir,
        output_names=dataset_params["output_names"],
        field_names=dataset_params["field_names"],
        num_train=dataset_params["num_train"],
        num_test=dataset_params["num_test"],
        num=dataset_params["num"],
        use_train=False,
    )
    mhd_dataloader_test = MHDDataloaderVecPot(
        dataset_test,
        sub_x=dataset_params["sub_x"],
        sub_t=dataset_params["sub_t"],
        ind_x=dataset_params["ind_x"],
        ind_t=dataset_params["ind_t"],
    )
    dataloader_test, sampler_test = mhd_dataloader_test.create_dataloader(
        batch_size=test_loader_params["batch_size"],
        shuffle=test_loader_params["shuffle"],
        num_workers=test_loader_params["num_workers"],
        pin_memory=test_loader_params["pin_memory"],
        distributed=dist.distributed,
    )

    # define FNO model
    model = TFNO(
        in_channels=model_params["in_dim"],
        out_channels=model_params["out_dim"],
        decoder_layers=model_params["decoder_layers"],
        decoder_layer_size=model_params["fc_dim"],
        dimension=model_params["dimension"],
        latent_channels=model_params["layers"],
        num_fno_layers=model_params["num_fno_layers"],
        num_fno_modes=model_params["modes"],
        padding=[model_params["pad_z"], model_params["pad_y"], model_params["pad_x"]],
        rank=model_params["rank"],
        factorization=model_params["factorization"],
        fixed_rank_modes=model_params["fixed_rank_modes"],
    ).to(dist.device)

    # Set up DistributedDataParallel if using more than a single process.
    # The `distributed` property of DistributedManager can be used to
    # check this.
    if dist.distributed:
        ddps = torch.cuda.Stream()
        with torch.cuda.stream(ddps):
            model = DistributedDataParallel(
                model,
                device_ids=[dist.local_rank],  # Set the device_id to be
                # the local rank of this process on
                # this node
                output_device=dist.device,
                broadcast_buffers=dist.broadcast_buffers,
                find_unused_parameters=dist.find_unused_parameters,
            )
        torch.cuda.current_stream().wait_stream(ddps)

    # Construct optimizer and scheduler
    optimizer = AdamW(
        model.parameters(),
        betas=optimizer_params["betas"],
        lr=optimizer_params["lr"],
        weight_decay=0.1,
    )

    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer,
        milestones=optimizer_params["milestones"],
        gamma=optimizer_params["gamma"],
    )

    # Construct Loss class
    mhd_loss = LossMHDVecPot_PhysicsNeMo(**loss_params)

    # Load model from checkpoint (if exists)
    if load_checkpoint:
        _ = load_checkpoint(
            test_params["ckpt_path"], model, optimizer, scheduler, device=dist.device
        )

    # Eval Loop
    names = dataset_params["fields"]
    input_norm = torch.tensor(model_params["input_norm"]).to(dist.device)
    output_norm = torch.tensor(model_params["output_norm"]).to(dist.device)

    with LaunchLogger("test") as log:
        # Val loop
        model.eval()
        plot_count = 0
        with torch.no_grad():
            for i, (inputs, outputs) in enumerate(dataloader_test):
                inputs = inputs.type(dtype).to(dist.device)
                outputs = outputs.type(dtype).to(dist.device)
                start_time = time.time()
                # Compute Predictions
                pred = (
                    model((inputs / input_norm).permute(0, 4, 1, 2, 3)).permute(
                        0, 2, 3, 4, 1
                    )
                    * output_norm
                )
                end_time = time.time()
                print(f"Inference Time: {end_time-start_time}")
                # Compute Loss
                loss, loss_dict = mhd_loss(pred, outputs, inputs, return_loss_dict=True)

                log.log_minibatch(loss_dict)

                # Get prediction plots
                for j, _ in enumerate(pred):
                    # Make plots for each field
                    for index, name in enumerate(names):
                        # Generate figure
                        _ = plot_predictions_mhd_plotly(
                            pred[j].cpu(),
                            outputs[j].cpu(),
                            inputs[j].cpu(),
                            index=index,
                            name=name,
                        )

                    plot_count += 1

                # Get prediction plots and save images locally
                for j, _ in enumerate(pred):
                    # Generate figure
                    plot_predictions_mhd(
                        pred[j].cpu(),
                        outputs[j].cpu(),
                        inputs[j].cpu(),
                        names=names,
                        save_path=os.path.join(
                            output_dir,
                            "MHD_eval_" + str(dist.rank),
                        ),
                        save_suffix=i,
                    )


if __name__ == "__main__":
    main()