Spaces:
Running
on
Zero
Running
on
Zero
- app.py +41 -14
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -45,20 +45,47 @@ try:
|
|
| 45 |
|
| 46 |
except Exception as e:
|
| 47 |
print(f"Error initializing model {MODEL_NAME}: {str(e)}")
|
| 48 |
-
print("
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
# Log device information
|
| 64 |
if hasattr(model, 'device'):
|
|
|
|
| 45 |
|
| 46 |
except Exception as e:
|
| 47 |
print(f"Error initializing model {MODEL_NAME}: {str(e)}")
|
| 48 |
+
print("Trying with simplified parameters...")
|
| 49 |
+
|
| 50 |
+
try:
|
| 51 |
+
# Try with simpler parameters
|
| 52 |
+
text_pipeline = pipeline(
|
| 53 |
+
"text-generation",
|
| 54 |
+
model=MODEL_NAME,
|
| 55 |
+
trust_remote_code=True
|
| 56 |
+
)
|
| 57 |
+
model = text_pipeline.model
|
| 58 |
+
tok = text_pipeline.tokenizer
|
| 59 |
+
print(f"Model loaded with simplified parameters: {MODEL_NAME}")
|
| 60 |
+
|
| 61 |
+
except Exception as e2:
|
| 62 |
+
print(f"Second attempt failed: {str(e2)}")
|
| 63 |
+
print("Falling back to distilgpt2 (uses safetensors)...")
|
| 64 |
+
|
| 65 |
+
# Use distilgpt2 which uses safetensors format and is more compatible
|
| 66 |
+
MODEL_NAME = "distilgpt2"
|
| 67 |
+
try:
|
| 68 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 69 |
+
text_pipeline = pipeline(
|
| 70 |
+
"text-generation",
|
| 71 |
+
model=MODEL_NAME,
|
| 72 |
+
tokenizer=tokenizer
|
| 73 |
+
)
|
| 74 |
+
model = text_pipeline.model
|
| 75 |
+
tok = text_pipeline.tokenizer
|
| 76 |
+
print(f"Fallback model loaded: {MODEL_NAME}")
|
| 77 |
+
|
| 78 |
+
except Exception as e3:
|
| 79 |
+
print(f"Fallback also failed: {str(e3)}")
|
| 80 |
+
print("Trying direct model loading as last resort...")
|
| 81 |
+
|
| 82 |
+
# Last resort: direct loading without pipeline
|
| 83 |
+
try:
|
| 84 |
+
tok = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 85 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME).eval()
|
| 86 |
+
print(f"Direct loading successful: {MODEL_NAME}")
|
| 87 |
+
except Exception as e4:
|
| 88 |
+
raise RuntimeError(f"All model loading attempts failed. Last error: {str(e4)}")
|
| 89 |
|
| 90 |
# Log device information
|
| 91 |
if hasattr(model, 'device'):
|
requirements.txt
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
# Core dependencies for LLM Threat Association Analysis (ZeroGPU compatible)
|
| 2 |
gradio>=4.0.0
|
| 3 |
-
torch==2.
|
| 4 |
transformers>=4.30.0
|
| 5 |
pandas>=2.0.0
|
| 6 |
accelerate>=0.26.0
|
|
|
|
| 1 |
# Core dependencies for LLM Threat Association Analysis (ZeroGPU compatible)
|
| 2 |
gradio>=4.0.0
|
| 3 |
+
torch==2.5.1
|
| 4 |
transformers>=4.30.0
|
| 5 |
pandas>=2.0.0
|
| 6 |
accelerate>=0.26.0
|