Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- app.py +95 -0
- best_indobert_multipredict.pt +3 -0
- inference.py +95 -0
- le_tax_classes.npy +3 -0
- le_topic_classes.npy +3 -0
- requirements.txt +10 -0
app.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import os, time, io, logging
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from inference import InferenceEngine
|
| 6 |
+
|
| 7 |
+
# --------- CONFIG ----------
|
| 8 |
+
MODEL_CKPT = "best_indobert_multipredict.pt"
|
| 9 |
+
TOKENIZER_NAME = "indobenchmark/indobert-base-p2"
|
| 10 |
+
CSV_INPUT_COL = "soal" # expected text column in uploaded CSV
|
| 11 |
+
LOG_PATH = "inference_log.csv"
|
| 12 |
+
|
| 13 |
+
st.set_page_config(page_title="IndoBERT Multi-Predict (Topic + Taxonomy)", layout="wide")
|
| 14 |
+
|
| 15 |
+
# basic logging to csv
|
| 16 |
+
if not os.path.exists(LOG_PATH):
|
| 17 |
+
pd.DataFrame(columns=["timestamp","input_sample","topic_pred","topic_conf","tax_pred","tax_conf","runtime_s"]).to_csv(LOG_PATH, index=False)
|
| 18 |
+
|
| 19 |
+
@st.cache_resource
|
| 20 |
+
def load_engine():
|
| 21 |
+
eng = InferenceEngine(ckpt_path=MODEL_CKPT, tokenizer_name=TOKENIZER_NAME)
|
| 22 |
+
return eng
|
| 23 |
+
|
| 24 |
+
st.title("IndoBERT β Multi-Predict (Topic & Taxonomy)")
|
| 25 |
+
st.caption("Shared encoder β 2 output heads. Fast inference (CPU/GPU).")
|
| 26 |
+
|
| 27 |
+
eng = load_engine()
|
| 28 |
+
|
| 29 |
+
# Left column: input
|
| 30 |
+
c1, c2 = st.columns([1,1.2])
|
| 31 |
+
|
| 32 |
+
with c1:
|
| 33 |
+
st.header("Single prediction")
|
| 34 |
+
text = st.text_area("Paste your question / soal here:", height=160, placeholder="Tulis soal / pernyataan ...")
|
| 35 |
+
st.write("Light cleaning applied (lowercase, trim, normalize spaces).")
|
| 36 |
+
if st.button("Predict single"):
|
| 37 |
+
start = time.time()
|
| 38 |
+
res = eng.predict_texts([text])[0]
|
| 39 |
+
runtime = time.time() - start
|
| 40 |
+
# show result
|
| 41 |
+
st.subheader("Result")
|
| 42 |
+
st.metric("Topic", f"{res['topic_label']} ({res['topic_idx']})", delta=f"{res['topic_conf']:.3f}")
|
| 43 |
+
st.metric("Taxonomy", f"{res['tax_label']} ({res['tax_idx']})", delta=f"{res['tax_conf']:.3f}")
|
| 44 |
+
# optional: probability bar
|
| 45 |
+
st.write("Topic confidence:", f"{res['topic_conf']:.3f}")
|
| 46 |
+
st.write("Taxonomy confidence:", f"{res['tax_conf']:.3f}")
|
| 47 |
+
st.write("Raw probs (topic head): β first 8 shown")
|
| 48 |
+
st.write(res["topic_probs"][:8])
|
| 49 |
+
# logging
|
| 50 |
+
# logging disabled on HF Spaces
|
| 51 |
+
pass
|
| 52 |
+
|
| 53 |
+
with c2:
|
| 54 |
+
st.header("Batch prediction (CSV)")
|
| 55 |
+
st.write("CSV format: must contain column called:", f"`{CSV_INPUT_COL}`")
|
| 56 |
+
uploaded = st.file_uploader("Upload CSV file", type=["csv"])
|
| 57 |
+
if uploaded is not None:
|
| 58 |
+
try:
|
| 59 |
+
df = pd.read_csv(uploaded)
|
| 60 |
+
except Exception:
|
| 61 |
+
df = pd.read_csv(uploaded, encoding="latin1")
|
| 62 |
+
st.write("Preview uploaded data (first 5 rows):")
|
| 63 |
+
st.dataframe(df.head())
|
| 64 |
+
if CSV_INPUT_COL not in df.columns:
|
| 65 |
+
st.error(f"CSV must contain column `{CSV_INPUT_COL}`. Rename your text column accordingly.")
|
| 66 |
+
else:
|
| 67 |
+
if st.button("Predict batch"):
|
| 68 |
+
texts = df[CSV_INPUT_COL].astype(str).tolist()
|
| 69 |
+
t0 = time.time()
|
| 70 |
+
results = eng.predict_texts(texts)
|
| 71 |
+
elapsed = time.time() - t0
|
| 72 |
+
# join results into dataframe
|
| 73 |
+
out = pd.DataFrame(results)
|
| 74 |
+
out = out.rename(columns={
|
| 75 |
+
"topic_label":"pred_topic",
|
| 76 |
+
"topic_conf":"pred_topic_conf",
|
| 77 |
+
"tax_label":"pred_tax",
|
| 78 |
+
"tax_conf":"pred_tax_conf"
|
| 79 |
+
})
|
| 80 |
+
# attach to original
|
| 81 |
+
df_out = pd.concat([df.reset_index(drop=True), out[["pred_topic","pred_topic_conf","pred_tax","pred_tax_conf"]]], axis=1)
|
| 82 |
+
st.success(f"Done β {len(df_out)} rows in {elapsed:.2f}s")
|
| 83 |
+
st.dataframe(df_out.head(50))
|
| 84 |
+
# allow download
|
| 85 |
+
csv_bytes = df_out.to_csv(index=False).encode("utf-8")
|
| 86 |
+
st.download_button("Download predictions (CSV)", csv_bytes, file_name="predictions.csv", mime="text/csv")
|
| 87 |
+
# append logs
|
| 88 |
+
# logging disabled on HF Spaces
|
| 89 |
+
pass # logging disabled on HF Spaces
|
| 90 |
+
|
| 91 |
+
# logging disabled on HF Spaces
|
| 92 |
+
|
| 93 |
+
st.write("---")
|
| 94 |
+
st.markdown("**Model info:** IndoBERT shared encoder (multi-head). Checkpoint: `" + MODEL_CKPT + "`")
|
| 95 |
+
st.markdown("**Notes:** For best label names ensure `le_topic_classes.npy` and `le_tax_classes.npy` are present in the app folder.")
|
best_indobert_multipredict.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e24acc8a8a4af4b79019ec97b7b921ec5512e5e62b9001f7946daa150e2c3054
|
| 3 |
+
size 43092
|
inference.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import os, time, io, logging
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from inference import InferenceEngine
|
| 6 |
+
|
| 7 |
+
# --------- CONFIG ----------
|
| 8 |
+
MODEL_CKPT = "best_indobert_multipredict.pt"
|
| 9 |
+
TOKENIZER_NAME = "indobenchmark/indobert-base-p2"
|
| 10 |
+
CSV_INPUT_COL = "soal" # expected text column in uploaded CSV
|
| 11 |
+
LOG_PATH = "inference_log.csv"
|
| 12 |
+
|
| 13 |
+
st.set_page_config(page_title="IndoBERT Multi-Predict (Topic + Taxonomy)", layout="wide")
|
| 14 |
+
|
| 15 |
+
# basic logging to csv
|
| 16 |
+
if not os.path.exists(LOG_PATH):
|
| 17 |
+
pd.DataFrame(columns=["timestamp","input_sample","topic_pred","topic_conf","tax_pred","tax_conf","runtime_s"]).to_csv(LOG_PATH, index=False)
|
| 18 |
+
|
| 19 |
+
@st.cache_resource
|
| 20 |
+
def load_engine():
|
| 21 |
+
eng = InferenceEngine(ckpt_path=MODEL_CKPT, tokenizer_name=TOKENIZER_NAME)
|
| 22 |
+
return eng
|
| 23 |
+
|
| 24 |
+
st.title("IndoBERT β Multi-Predict (Topic & Taxonomy)")
|
| 25 |
+
st.caption("Shared encoder β 2 output heads. Fast inference (CPU/GPU).")
|
| 26 |
+
|
| 27 |
+
eng = load_engine()
|
| 28 |
+
|
| 29 |
+
# Left column: input
|
| 30 |
+
c1, c2 = st.columns([1,1.2])
|
| 31 |
+
|
| 32 |
+
with c1:
|
| 33 |
+
st.header("Single prediction")
|
| 34 |
+
text = st.text_area("Paste your question / soal here:", height=160, placeholder="Tulis soal / pernyataan ...")
|
| 35 |
+
st.write("Light cleaning applied (lowercase, trim, normalize spaces).")
|
| 36 |
+
if st.button("Predict single"):
|
| 37 |
+
start = time.time()
|
| 38 |
+
res = eng.predict_texts([text])[0]
|
| 39 |
+
runtime = time.time() - start
|
| 40 |
+
# show result
|
| 41 |
+
st.subheader("Result")
|
| 42 |
+
st.metric("Topic", f"{res['topic_label']} ({res['topic_idx']})", delta=f"{res['topic_conf']:.3f}")
|
| 43 |
+
st.metric("Taxonomy", f"{res['tax_label']} ({res['tax_idx']})", delta=f"{res['tax_conf']:.3f}")
|
| 44 |
+
# optional: probability bar
|
| 45 |
+
st.write("Topic confidence:", f"{res['topic_conf']:.3f}")
|
| 46 |
+
st.write("Taxonomy confidence:", f"{res['tax_conf']:.3f}")
|
| 47 |
+
st.write("Raw probs (topic head): β first 8 shown")
|
| 48 |
+
st.write(res["topic_probs"][:8])
|
| 49 |
+
# logging
|
| 50 |
+
# logging disabled on HF Spaces
|
| 51 |
+
pass
|
| 52 |
+
|
| 53 |
+
with c2:
|
| 54 |
+
st.header("Batch prediction (CSV)")
|
| 55 |
+
st.write("CSV format: must contain column called:", f"`{CSV_INPUT_COL}`")
|
| 56 |
+
uploaded = st.file_uploader("Upload CSV file", type=["csv"])
|
| 57 |
+
if uploaded is not None:
|
| 58 |
+
try:
|
| 59 |
+
df = pd.read_csv(uploaded)
|
| 60 |
+
except Exception:
|
| 61 |
+
df = pd.read_csv(uploaded, encoding="latin1")
|
| 62 |
+
st.write("Preview uploaded data (first 5 rows):")
|
| 63 |
+
st.dataframe(df.head())
|
| 64 |
+
if CSV_INPUT_COL not in df.columns:
|
| 65 |
+
st.error(f"CSV must contain column `{CSV_INPUT_COL}`. Rename your text column accordingly.")
|
| 66 |
+
else:
|
| 67 |
+
if st.button("Predict batch"):
|
| 68 |
+
texts = df[CSV_INPUT_COL].astype(str).tolist()
|
| 69 |
+
t0 = time.time()
|
| 70 |
+
results = eng.predict_texts(texts)
|
| 71 |
+
elapsed = time.time() - t0
|
| 72 |
+
# join results into dataframe
|
| 73 |
+
out = pd.DataFrame(results)
|
| 74 |
+
out = out.rename(columns={
|
| 75 |
+
"topic_label":"pred_topic",
|
| 76 |
+
"topic_conf":"pred_topic_conf",
|
| 77 |
+
"tax_label":"pred_tax",
|
| 78 |
+
"tax_conf":"pred_tax_conf"
|
| 79 |
+
})
|
| 80 |
+
# attach to original
|
| 81 |
+
df_out = pd.concat([df.reset_index(drop=True), out[["pred_topic","pred_topic_conf","pred_tax","pred_tax_conf"]]], axis=1)
|
| 82 |
+
st.success(f"Done β {len(df_out)} rows in {elapsed:.2f}s")
|
| 83 |
+
st.dataframe(df_out.head(50))
|
| 84 |
+
# allow download
|
| 85 |
+
csv_bytes = df_out.to_csv(index=False).encode("utf-8")
|
| 86 |
+
st.download_button("Download predictions (CSV)", csv_bytes, file_name="predictions.csv", mime="text/csv")
|
| 87 |
+
# append logs
|
| 88 |
+
# logging disabled on HF Spaces
|
| 89 |
+
pass # logging disabled on HF Spaces
|
| 90 |
+
|
| 91 |
+
# logging disabled on HF Spaces
|
| 92 |
+
|
| 93 |
+
st.write("---")
|
| 94 |
+
st.markdown("**Model info:** IndoBERT shared encoder (multi-head). Checkpoint: `" + MODEL_CKPT + "`")
|
| 95 |
+
st.markdown("**Notes:** For best label names ensure `le_topic_classes.npy` and `le_tax_classes.npy` are present in the app folder.")
|
le_tax_classes.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fa81876133d73c7c61dcb583cfa4e74f6dc72a5b1d30fe25f800576333a279be
|
| 3 |
+
size 160
|
le_topic_classes.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8a3c127a53576a488189251889d52c07bb3d0bb33ff8b8a5a25b26e8f0ad90dc
|
| 3 |
+
size 535
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.2.1
|
| 2 |
+
transformers==4.44.2
|
| 3 |
+
streamlit==1.38.0
|
| 4 |
+
numpy==1.26.4
|
| 5 |
+
accelerate
|
| 6 |
+
protobuf==3.20.3
|
| 7 |
+
huggingface-hub==0.17.4
|
| 8 |
+
joblib
|
| 9 |
+
scikit-learn
|
| 10 |
+
sentencepiece
|