Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,10 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
from
|
| 4 |
-
|
| 5 |
-
# Load the models
|
| 6 |
-
caption_generator = pipeline("image-captioning", model="gokaygokay/SD3-Long-Captioner")
|
| 7 |
-
compliment_generator = pipeline("text-generation", model="hysts/zephyr-7b")
|
| 8 |
|
| 9 |
SYSTEM_PROMPT = """
|
| 10 |
-
You are helpful assistant that gives the best compliments to people.
|
| 11 |
You will be given a caption of someone's headshot.
|
| 12 |
Based on that caption, provide a one sentence compliment to the person in the image.
|
| 13 |
Make sure you compliment the person in the image and not any objects or scenery.
|
|
@@ -21,12 +18,30 @@ Conversation begins below:
|
|
| 21 |
"""
|
| 22 |
|
| 23 |
def generate_compliment(image):
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
return caption, compliment
|
| 31 |
|
| 32 |
# Gradio interface
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import io
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
SYSTEM_PROMPT = """
|
| 7 |
+
You are a helpful assistant that gives the best compliments to people.
|
| 8 |
You will be given a caption of someone's headshot.
|
| 9 |
Based on that caption, provide a one sentence compliment to the person in the image.
|
| 10 |
Make sure you compliment the person in the image and not any objects or scenery.
|
|
|
|
| 18 |
"""
|
| 19 |
|
| 20 |
def generate_compliment(image):
|
| 21 |
+
# Convert PIL image to bytes
|
| 22 |
+
buffered = io.BytesIO()
|
| 23 |
+
image.save(buffered, format="JPEG")
|
| 24 |
+
image_bytes = buffered.getvalue()
|
| 25 |
+
|
| 26 |
+
# Connect to the captioning model on Hugging Face Spaces
|
| 27 |
+
captioning_url = "https://gokaygokay-sd3-long-captioner.hf.space/run/create_captions_rich"
|
| 28 |
+
caption_response = requests.post(captioning_url, files={"image": image_bytes})
|
| 29 |
+
caption = caption_response.json()["data"][0]
|
| 30 |
+
|
| 31 |
+
# Connect to the LLM model on Hugging Face Spaces
|
| 32 |
+
llm_url = "https://hysts-zephyr-7b.hf.space/run/chat"
|
| 33 |
+
llm_payload = {
|
| 34 |
+
"system_prompt": SYSTEM_PROMPT,
|
| 35 |
+
"message": f"Caption: {caption}\nCompliment: ",
|
| 36 |
+
"max_new_tokens": 256,
|
| 37 |
+
"temperature": 0.7,
|
| 38 |
+
"top_p": 0.95,
|
| 39 |
+
"top_k": 50,
|
| 40 |
+
"repetition_penalty": 1,
|
| 41 |
+
}
|
| 42 |
+
llm_response = requests.post(llm_url, json=llm_payload)
|
| 43 |
+
compliment = llm_response.json()["data"][0]
|
| 44 |
+
|
| 45 |
return caption, compliment
|
| 46 |
|
| 47 |
# Gradio interface
|