File size: 12,016 Bytes
41f287b
 
eb21945
2acc319
eb21945
2acc319
41f287b
50dc858
41f287b
 
 
 
 
50dc858
eb21945
41f287b
2acc319
41f287b
2acc319
41f287b
 
 
 
2acc319
50dc858
 
2acc319
63cec06
 
2acc319
 
 
 
50dc858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9916e82
9c5d023
 
2acc319
 
eb21945
41f287b
2acc319
712f536
2acc319
712f536
2acc319
8d87b13
2acc319
 
 
 
 
 
 
 
 
 
 
 
 
 
8d87b13
2acc319
 
 
 
 
 
 
 
 
 
8d87b13
2acc319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d87b13
2acc319
 
 
eb21945
63cec06
41f287b
2acc319
41f287b
 
2acc319
 
 
 
 
 
41f287b
 
2acc319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63cec06
 
 
 
 
 
 
 
 
50dc858
63cec06
50dc858
63cec06
50dc858
63cec06
50dc858
63cec06
50dc858
63cec06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2acc319
 
 
 
 
 
 
63cec06
 
 
2acc319
91a6110
2acc319
05da55f
e96ef70
05da55f
 
 
2acc319
9916e82
493b76c
 
9916e82
50dc858
91a6110
 
 
 
 
63cec06
 
 
 
 
 
9916e82
50dc858
 
d5894b3
50dc858
 
63cec06
 
 
 
 
 
 
 
 
 
 
e61207c
41f287b
 
b33414d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
from typing import Iterable

import gradio as gr
import spaces
import torch
from PIL import Image, ImageOps
import requests

from transformers import (
    Qwen2VLForConditionalGeneration,
    Qwen2_5_VLForConditionalGeneration,
    AutoModelForCausalLM,
    AutoModelForVision2Seq,
    AutoProcessor,
    TextIteratorStreamer,
)
from transformers.image_utils import load_image
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes

from docling_core.types.doc import DoclingDocument, DocTagsDocument

import re
import ast
import html

# --- Theme and CSS Definition ---

colors.steel_blue = colors.Color(
    name="steel_blue",
    c50="#EBF3F8",
    c100="#D3E5F0",
    c200="#A8CCE1",
    c300="#7DB3D2",
    c400="#529AC3",
    c500="#4682B4",  # SteelBlue base color
    c600="#3E72A0",
    c700="#36638C",
    c800="#2E5378",
    c900="#264364",
    c950="#1E3450",
)

class SteelBlueTheme(Soft):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.gray,
        secondary_hue: colors.Color | str = colors.steel_blue,
        neutral_hue: colors.Color | str = colors.slate,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
        ),
        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            background_fill_primary="*primary_50",
            background_fill_primary_dark="*primary_900",
            body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
            body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
            button_primary_text_color="white",
            button_primary_text_color_hover="white",
            button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
            slider_color="*secondary_500",
            slider_color_dark="*secondary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            button_primary_shadow="*shadow_drop_lg",
            button_large_padding="11px",
            color_accent_soft="*primary_100",
            block_label_background_fill="*primary_200",
        )

steel_blue_theme = SteelBlueTheme()

css = """
#main-title h1 {
    font-size: 2.3em !important;
}
#output-title h2 {
    font-size: 2.1em !important;
}
"""

# Constants for text generation
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load Nanonets-OCR-s
MODEL_ID_M = "nanonets/Nanonets-OCR-s"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M,
    attn_implementation="flash_attention_2",
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load MonkeyOCR
MODEL_ID_G = "echo840/MonkeyOCR"
SUBFOLDER = "Recognition"
processor_g = AutoProcessor.from_pretrained(
    MODEL_ID_G,
    trust_remote_code=True,
    subfolder=SUBFOLDER
)
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_G,
    attn_implementation="flash_attention_2",
    trust_remote_code=True,
    subfolder=SUBFOLDER,
    torch_dtype=torch.float16
).to(device).eval()

# Load Typhoon-OCR-7B
MODEL_ID_L = "scb10x/typhoon-ocr-7b"
processor_l = AutoProcessor.from_pretrained(MODEL_ID_L, trust_remote_code=True)
model_l = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_L,
    attn_implementation="flash_attention_2",
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load SmolDocling-256M-preview
MODEL_ID_X = "ds4sd/SmolDocling-256M-preview"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = AutoModelForVision2Seq.from_pretrained(
    MODEL_ID_X,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Thyme-RL
MODEL_ID_N = "Kwai-Keye/Thyme-RL"
processor_n = AutoProcessor.from_pretrained(MODEL_ID_N, trust_remote_code=True)
model_n = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_N,
    attn_implementation="flash_attention_2",
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Preprocessing functions for SmolDocling-256M
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
    """Add random padding to an image based on its size."""
    image = image.convert("RGB")
    width, height = image.size
    pad_w_percent = random.uniform(min_percent, max_percent)
    pad_h_percent = random.uniform(min_percent, max_percent)
    pad_w = int(width * pad_w_percent)
    pad_h = int(height * pad_h_percent)
    corner_pixel = image.getpixel((0, 0))  # Top-left corner
    padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
    return padded_image

def normalize_values(text, target_max=500):
    """Normalize numerical values in text to a target maximum."""
    def normalize_list(values):
        max_value = max(values) if values else 1
        return [round((v / max_value) * target_max) for v in values]

    def process_match(match):
        num_list = ast.literal_eval(match.group(0))
        normalized = normalize_list(num_list)
        return "".join([f"<loc_{num}>" for num in normalized])

    pattern = r"\[([\d\.\s,]+)\]"
    normalized_text = re.sub(pattern, process_match, text)
    return normalized_text

@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """Generate responses for image input using the selected model."""
    if model_name == "Nanonets-OCR-s":
        processor, model = processor_m, model_m
    elif model_name == "MonkeyOCR-Recognition":
        processor, model = processor_g, model_g
    elif model_name == "SmolDocling-256M-preview":
        processor, model = processor_x, model_x
    elif model_name == "Typhoon-OCR-7B":
        processor, model = processor_l, model_l
    elif model_name == "Thyme-RL":
        processor, model = processor_n, model_n
    else:
        yield "Invalid model selected.", "Invalid model selected."
        return

    if image is None:
        yield "Please upload an image.", "Please upload an image."
        return

    images = [image]

    if model_name == "SmolDocling-256M-preview":
        if "OTSL" in text or "code" in text:
            images = [add_random_padding(img) for img in images]
        if "OCR at text at" in text or "Identify element" in text or "formula" in text:
            text = normalize_values(text, target_max=500)

    messages = [
        {
            "role": "user",
            "content": [{"type": "image"} for _ in images] + [
                {"type": "text", "text": text}
            ]
        }
    ]
    prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)

    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
    }
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text.replace("<|im_end|>", "")
        yield buffer, buffer

    if model_name == "SmolDocling-256M-preview":
        cleaned_output = buffer.replace("<end_of_utterance>", "").strip()
        if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
            if "<chart>" in cleaned_output:
                cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
                cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
            doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
            doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
            markdown_output = doc.export_to_markdown()
            yield buffer, markdown_output
        else:
            yield buffer, cleaned_output

# Define examples for image inference
image_examples = [
    ["Perform OCR on the image precisely.", "examples/5.jpg"],
    ["Run OCR on the image and ensure high accuracy.", "examples/4.jpg"],
    ["Conduct OCR on the image with exact text recognition.", "examples/2.jpg"],
    ["Perform precise OCR extraction on the image.", "examples/1.jpg"],
    ["Convert this page to docling", "examples/3.jpg"],
]

with gr.Blocks() as demo:
    gr.Markdown("# **Multimodal OCR2**", elem_id="main-title")
    with gr.Row():
        with gr.Column(scale=2):
            image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
            image_upload = gr.Image(type="pil", label="Upload Image", height=290)
            image_submit = gr.Button("Submit", variant="primary")
            gr.Examples(examples=image_examples, inputs=[image_query, image_upload])

            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
                
        with gr.Column(scale=3):
            gr.Markdown("## Output", elem_id="output-title")
            raw_output = gr.Textbox(label="Raw Output Stream", interactive=True, lines=11)
            with gr.Accordion("(Result.md)", open=False):
                formatted_output = gr.Markdown(label="(Result.md)")
            
            model_choice = gr.Radio(
                choices=["Nanonets-OCR-s", "MonkeyOCR-Recognition", "Thyme-RL", "Typhoon-OCR-7B", "SmolDocling-256M-preview"],
                label="Select Model",
                value="Nanonets-OCR-s"
            )
            
    image_submit.click(
        fn=generate_image,
        inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[raw_output, formatted_output]
    )

if __name__ == "__main__":
    demo.queue(max_size=30).launch(css=css, theme=steel_blue_theme, mcp_server=True, ssr_mode=False)