Spaces:
Running
on
Zero
Running
on
Zero
| # ------------------------------------------------------------------------------ | |
| # Adapted from https://github.com/HRNet/Lite-HRNet | |
| # Original licence: Apache License 2.0. | |
| # ------------------------------------------------------------------------------ | |
| import mmengine | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint as cp | |
| from mmcv.cnn import (ConvModule, DepthwiseSeparableConvModule, | |
| build_conv_layer, build_norm_layer) | |
| from mmengine.model import BaseModule | |
| from torch.nn.modules.batchnorm import _BatchNorm | |
| from mmpose.registry import MODELS | |
| from .base_backbone import BaseBackbone | |
| from .utils import channel_shuffle | |
| class SpatialWeighting(BaseModule): | |
| """Spatial weighting module. | |
| Args: | |
| channels (int): The channels of the module. | |
| ratio (int): channel reduction ratio. | |
| conv_cfg (dict): Config dict for convolution layer. | |
| Default: None, which means using conv2d. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: None. | |
| act_cfg (dict): Config dict for activation layer. | |
| Default: (dict(type='ReLU'), dict(type='Sigmoid')). | |
| The last ConvModule uses Sigmoid by default. | |
| init_cfg (dict or list[dict], optional): Initialization config dict. | |
| Default: None | |
| """ | |
| def __init__(self, | |
| channels, | |
| ratio=16, | |
| conv_cfg=None, | |
| norm_cfg=None, | |
| act_cfg=(dict(type='ReLU'), dict(type='Sigmoid')), | |
| init_cfg=None): | |
| super().__init__(init_cfg=init_cfg) | |
| if isinstance(act_cfg, dict): | |
| act_cfg = (act_cfg, act_cfg) | |
| assert len(act_cfg) == 2 | |
| assert mmengine.is_tuple_of(act_cfg, dict) | |
| self.global_avgpool = nn.AdaptiveAvgPool2d(1) | |
| self.conv1 = ConvModule( | |
| in_channels=channels, | |
| out_channels=int(channels / ratio), | |
| kernel_size=1, | |
| stride=1, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg[0]) | |
| self.conv2 = ConvModule( | |
| in_channels=int(channels / ratio), | |
| out_channels=channels, | |
| kernel_size=1, | |
| stride=1, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg[1]) | |
| def forward(self, x): | |
| out = self.global_avgpool(x) | |
| out = self.conv1(out) | |
| out = self.conv2(out) | |
| return x * out | |
| class CrossResolutionWeighting(BaseModule): | |
| """Cross-resolution channel weighting module. | |
| Args: | |
| channels (int): The channels of the module. | |
| ratio (int): channel reduction ratio. | |
| conv_cfg (dict): Config dict for convolution layer. | |
| Default: None, which means using conv2d. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: None. | |
| act_cfg (dict): Config dict for activation layer. | |
| Default: (dict(type='ReLU'), dict(type='Sigmoid')). | |
| The last ConvModule uses Sigmoid by default. | |
| init_cfg (dict or list[dict], optional): Initialization config dict. | |
| Default: None | |
| """ | |
| def __init__(self, | |
| channels, | |
| ratio=16, | |
| conv_cfg=None, | |
| norm_cfg=None, | |
| act_cfg=(dict(type='ReLU'), dict(type='Sigmoid')), | |
| init_cfg=None): | |
| super().__init__(init_cfg=init_cfg) | |
| if isinstance(act_cfg, dict): | |
| act_cfg = (act_cfg, act_cfg) | |
| assert len(act_cfg) == 2 | |
| assert mmengine.is_tuple_of(act_cfg, dict) | |
| self.channels = channels | |
| total_channel = sum(channels) | |
| self.conv1 = ConvModule( | |
| in_channels=total_channel, | |
| out_channels=int(total_channel / ratio), | |
| kernel_size=1, | |
| stride=1, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg[0]) | |
| self.conv2 = ConvModule( | |
| in_channels=int(total_channel / ratio), | |
| out_channels=total_channel, | |
| kernel_size=1, | |
| stride=1, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg[1]) | |
| def forward(self, x): | |
| mini_size = x[-1].size()[-2:] | |
| out = [F.adaptive_avg_pool2d(s, mini_size) for s in x[:-1]] + [x[-1]] | |
| out = torch.cat(out, dim=1) | |
| out = self.conv1(out) | |
| out = self.conv2(out) | |
| out = torch.split(out, self.channels, dim=1) | |
| out = [ | |
| s * F.interpolate(a, size=s.size()[-2:], mode='nearest') | |
| for s, a in zip(x, out) | |
| ] | |
| return out | |
| class ConditionalChannelWeighting(BaseModule): | |
| """Conditional channel weighting block. | |
| Args: | |
| in_channels (int): The input channels of the block. | |
| stride (int): Stride of the 3x3 convolution layer. | |
| reduce_ratio (int): channel reduction ratio. | |
| conv_cfg (dict): Config dict for convolution layer. | |
| Default: None, which means using conv2d. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: dict(type='BN'). | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. Default: False. | |
| init_cfg (dict or list[dict], optional): Initialization config dict. | |
| Default: None | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| stride, | |
| reduce_ratio, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN'), | |
| with_cp=False, | |
| init_cfg=None): | |
| super().__init__(init_cfg=init_cfg) | |
| self.with_cp = with_cp | |
| self.stride = stride | |
| assert stride in [1, 2] | |
| branch_channels = [channel // 2 for channel in in_channels] | |
| self.cross_resolution_weighting = CrossResolutionWeighting( | |
| branch_channels, | |
| ratio=reduce_ratio, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg) | |
| self.depthwise_convs = nn.ModuleList([ | |
| ConvModule( | |
| channel, | |
| channel, | |
| kernel_size=3, | |
| stride=self.stride, | |
| padding=1, | |
| groups=channel, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=None) for channel in branch_channels | |
| ]) | |
| self.spatial_weighting = nn.ModuleList([ | |
| SpatialWeighting(channels=channel, ratio=4) | |
| for channel in branch_channels | |
| ]) | |
| def forward(self, x): | |
| def _inner_forward(x): | |
| x = [s.chunk(2, dim=1) for s in x] | |
| x1 = [s[0] for s in x] | |
| x2 = [s[1] for s in x] | |
| x2 = self.cross_resolution_weighting(x2) | |
| x2 = [dw(s) for s, dw in zip(x2, self.depthwise_convs)] | |
| x2 = [sw(s) for s, sw in zip(x2, self.spatial_weighting)] | |
| out = [torch.cat([s1, s2], dim=1) for s1, s2 in zip(x1, x2)] | |
| out = [channel_shuffle(s, 2) for s in out] | |
| return out | |
| if self.with_cp and x.requires_grad: | |
| out = cp.checkpoint(_inner_forward, x) | |
| else: | |
| out = _inner_forward(x) | |
| return out | |
| class Stem(BaseModule): | |
| """Stem network block. | |
| Args: | |
| in_channels (int): The input channels of the block. | |
| stem_channels (int): Output channels of the stem layer. | |
| out_channels (int): The output channels of the block. | |
| expand_ratio (int): adjusts number of channels of the hidden layer | |
| in InvertedResidual by this amount. | |
| conv_cfg (dict): Config dict for convolution layer. | |
| Default: None, which means using conv2d. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: dict(type='BN'). | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. Default: False. | |
| init_cfg (dict or list[dict], optional): Initialization config dict. | |
| Default: None | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| stem_channels, | |
| out_channels, | |
| expand_ratio, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN'), | |
| with_cp=False, | |
| init_cfg=None): | |
| super().__init__(init_cfg=init_cfg) | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.conv_cfg = conv_cfg | |
| self.norm_cfg = norm_cfg | |
| self.with_cp = with_cp | |
| self.conv1 = ConvModule( | |
| in_channels=in_channels, | |
| out_channels=stem_channels, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| act_cfg=dict(type='ReLU')) | |
| mid_channels = int(round(stem_channels * expand_ratio)) | |
| branch_channels = stem_channels // 2 | |
| if stem_channels == self.out_channels: | |
| inc_channels = self.out_channels - branch_channels | |
| else: | |
| inc_channels = self.out_channels - stem_channels | |
| self.branch1 = nn.Sequential( | |
| ConvModule( | |
| branch_channels, | |
| branch_channels, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| groups=branch_channels, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=None), | |
| ConvModule( | |
| branch_channels, | |
| inc_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=dict(type='ReLU')), | |
| ) | |
| self.expand_conv = ConvModule( | |
| branch_channels, | |
| mid_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=dict(type='ReLU')) | |
| self.depthwise_conv = ConvModule( | |
| mid_channels, | |
| mid_channels, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| groups=mid_channels, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=None) | |
| self.linear_conv = ConvModule( | |
| mid_channels, | |
| branch_channels | |
| if stem_channels == self.out_channels else stem_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=dict(type='ReLU')) | |
| def forward(self, x): | |
| def _inner_forward(x): | |
| x = self.conv1(x) | |
| x1, x2 = x.chunk(2, dim=1) | |
| x2 = self.expand_conv(x2) | |
| x2 = self.depthwise_conv(x2) | |
| x2 = self.linear_conv(x2) | |
| out = torch.cat((self.branch1(x1), x2), dim=1) | |
| out = channel_shuffle(out, 2) | |
| return out | |
| if self.with_cp and x.requires_grad: | |
| out = cp.checkpoint(_inner_forward, x) | |
| else: | |
| out = _inner_forward(x) | |
| return out | |
| class IterativeHead(BaseModule): | |
| """Extra iterative head for feature learning. | |
| Args: | |
| in_channels (int): The input channels of the block. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: dict(type='BN'). | |
| init_cfg (dict or list[dict], optional): Initialization config dict. | |
| Default: None | |
| """ | |
| def __init__(self, in_channels, norm_cfg=dict(type='BN'), init_cfg=None): | |
| super().__init__(init_cfg=init_cfg) | |
| projects = [] | |
| num_branchs = len(in_channels) | |
| self.in_channels = in_channels[::-1] | |
| for i in range(num_branchs): | |
| if i != num_branchs - 1: | |
| projects.append( | |
| DepthwiseSeparableConvModule( | |
| in_channels=self.in_channels[i], | |
| out_channels=self.in_channels[i + 1], | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| norm_cfg=norm_cfg, | |
| act_cfg=dict(type='ReLU'), | |
| dw_act_cfg=None, | |
| pw_act_cfg=dict(type='ReLU'))) | |
| else: | |
| projects.append( | |
| DepthwiseSeparableConvModule( | |
| in_channels=self.in_channels[i], | |
| out_channels=self.in_channels[i], | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| norm_cfg=norm_cfg, | |
| act_cfg=dict(type='ReLU'), | |
| dw_act_cfg=None, | |
| pw_act_cfg=dict(type='ReLU'))) | |
| self.projects = nn.ModuleList(projects) | |
| def forward(self, x): | |
| x = x[::-1] | |
| y = [] | |
| last_x = None | |
| for i, s in enumerate(x): | |
| if last_x is not None: | |
| last_x = F.interpolate( | |
| last_x, | |
| size=s.size()[-2:], | |
| mode='bilinear', | |
| align_corners=True) | |
| s = s + last_x | |
| s = self.projects[i](s) | |
| y.append(s) | |
| last_x = s | |
| return y[::-1] | |
| class ShuffleUnit(BaseModule): | |
| """InvertedResidual block for ShuffleNetV2 backbone. | |
| Args: | |
| in_channels (int): The input channels of the block. | |
| out_channels (int): The output channels of the block. | |
| stride (int): Stride of the 3x3 convolution layer. Default: 1 | |
| conv_cfg (dict): Config dict for convolution layer. | |
| Default: None, which means using conv2d. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: dict(type='BN'). | |
| act_cfg (dict): Config dict for activation layer. | |
| Default: dict(type='ReLU'). | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. Default: False. | |
| init_cfg (dict or list[dict], optional): Initialization config dict. | |
| Default: None | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| out_channels, | |
| stride=1, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN'), | |
| act_cfg=dict(type='ReLU'), | |
| with_cp=False, | |
| init_cfg=None): | |
| super().__init__(init_cfg=init_cfg) | |
| self.stride = stride | |
| self.with_cp = with_cp | |
| branch_features = out_channels // 2 | |
| if self.stride == 1: | |
| assert in_channels == branch_features * 2, ( | |
| f'in_channels ({in_channels}) should equal to ' | |
| f'branch_features * 2 ({branch_features * 2}) ' | |
| 'when stride is 1') | |
| if in_channels != branch_features * 2: | |
| assert self.stride != 1, ( | |
| f'stride ({self.stride}) should not equal 1 when ' | |
| f'in_channels != branch_features * 2') | |
| if self.stride > 1: | |
| self.branch1 = nn.Sequential( | |
| ConvModule( | |
| in_channels, | |
| in_channels, | |
| kernel_size=3, | |
| stride=self.stride, | |
| padding=1, | |
| groups=in_channels, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=None), | |
| ConvModule( | |
| in_channels, | |
| branch_features, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg), | |
| ) | |
| self.branch2 = nn.Sequential( | |
| ConvModule( | |
| in_channels if (self.stride > 1) else branch_features, | |
| branch_features, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg), | |
| ConvModule( | |
| branch_features, | |
| branch_features, | |
| kernel_size=3, | |
| stride=self.stride, | |
| padding=1, | |
| groups=branch_features, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=None), | |
| ConvModule( | |
| branch_features, | |
| branch_features, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg)) | |
| def forward(self, x): | |
| def _inner_forward(x): | |
| if self.stride > 1: | |
| out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) | |
| else: | |
| x1, x2 = x.chunk(2, dim=1) | |
| out = torch.cat((x1, self.branch2(x2)), dim=1) | |
| out = channel_shuffle(out, 2) | |
| return out | |
| if self.with_cp and x.requires_grad: | |
| out = cp.checkpoint(_inner_forward, x) | |
| else: | |
| out = _inner_forward(x) | |
| return out | |
| class LiteHRModule(BaseModule): | |
| """High-Resolution Module for LiteHRNet. | |
| It contains conditional channel weighting blocks and | |
| shuffle blocks. | |
| Args: | |
| num_branches (int): Number of branches in the module. | |
| num_blocks (int): Number of blocks in the module. | |
| in_channels (list(int)): Number of input image channels. | |
| reduce_ratio (int): Channel reduction ratio. | |
| module_type (str): 'LITE' or 'NAIVE' | |
| multiscale_output (bool): Whether to output multi-scale features. | |
| with_fuse (bool): Whether to use fuse layers. | |
| conv_cfg (dict): dictionary to construct and config conv layer. | |
| norm_cfg (dict): dictionary to construct and config norm layer. | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. | |
| init_cfg (dict or list[dict], optional): Initialization config dict. | |
| Default: None | |
| """ | |
| def __init__(self, | |
| num_branches, | |
| num_blocks, | |
| in_channels, | |
| reduce_ratio, | |
| module_type, | |
| multiscale_output=False, | |
| with_fuse=True, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN'), | |
| with_cp=False, | |
| init_cfg=None): | |
| super().__init__(init_cfg=init_cfg) | |
| self._check_branches(num_branches, in_channels) | |
| self.in_channels = in_channels | |
| self.num_branches = num_branches | |
| self.module_type = module_type | |
| self.multiscale_output = multiscale_output | |
| self.with_fuse = with_fuse | |
| self.norm_cfg = norm_cfg | |
| self.conv_cfg = conv_cfg | |
| self.with_cp = with_cp | |
| if self.module_type.upper() == 'LITE': | |
| self.layers = self._make_weighting_blocks(num_blocks, reduce_ratio) | |
| elif self.module_type.upper() == 'NAIVE': | |
| self.layers = self._make_naive_branches(num_branches, num_blocks) | |
| else: | |
| raise ValueError("module_type should be either 'LITE' or 'NAIVE'.") | |
| if self.with_fuse: | |
| self.fuse_layers = self._make_fuse_layers() | |
| self.relu = nn.ReLU() | |
| def _check_branches(self, num_branches, in_channels): | |
| """Check input to avoid ValueError.""" | |
| if num_branches != len(in_channels): | |
| error_msg = f'NUM_BRANCHES({num_branches}) ' \ | |
| f'!= NUM_INCHANNELS({len(in_channels)})' | |
| raise ValueError(error_msg) | |
| def _make_weighting_blocks(self, num_blocks, reduce_ratio, stride=1): | |
| """Make channel weighting blocks.""" | |
| layers = [] | |
| for i in range(num_blocks): | |
| layers.append( | |
| ConditionalChannelWeighting( | |
| self.in_channels, | |
| stride=stride, | |
| reduce_ratio=reduce_ratio, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| with_cp=self.with_cp)) | |
| return nn.Sequential(*layers) | |
| def _make_one_branch(self, branch_index, num_blocks, stride=1): | |
| """Make one branch.""" | |
| layers = [] | |
| layers.append( | |
| ShuffleUnit( | |
| self.in_channels[branch_index], | |
| self.in_channels[branch_index], | |
| stride=stride, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| act_cfg=dict(type='ReLU'), | |
| with_cp=self.with_cp)) | |
| for i in range(1, num_blocks): | |
| layers.append( | |
| ShuffleUnit( | |
| self.in_channels[branch_index], | |
| self.in_channels[branch_index], | |
| stride=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| act_cfg=dict(type='ReLU'), | |
| with_cp=self.with_cp)) | |
| return nn.Sequential(*layers) | |
| def _make_naive_branches(self, num_branches, num_blocks): | |
| """Make branches.""" | |
| branches = [] | |
| for i in range(num_branches): | |
| branches.append(self._make_one_branch(i, num_blocks)) | |
| return nn.ModuleList(branches) | |
| def _make_fuse_layers(self): | |
| """Make fuse layer.""" | |
| if self.num_branches == 1: | |
| return None | |
| num_branches = self.num_branches | |
| in_channels = self.in_channels | |
| fuse_layers = [] | |
| num_out_branches = num_branches if self.multiscale_output else 1 | |
| for i in range(num_out_branches): | |
| fuse_layer = [] | |
| for j in range(num_branches): | |
| if j > i: | |
| fuse_layer.append( | |
| nn.Sequential( | |
| build_conv_layer( | |
| self.conv_cfg, | |
| in_channels[j], | |
| in_channels[i], | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| bias=False), | |
| build_norm_layer(self.norm_cfg, in_channels[i])[1], | |
| nn.Upsample( | |
| scale_factor=2**(j - i), mode='nearest'))) | |
| elif j == i: | |
| fuse_layer.append(None) | |
| else: | |
| conv_downsamples = [] | |
| for k in range(i - j): | |
| if k == i - j - 1: | |
| conv_downsamples.append( | |
| nn.Sequential( | |
| build_conv_layer( | |
| self.conv_cfg, | |
| in_channels[j], | |
| in_channels[j], | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| groups=in_channels[j], | |
| bias=False), | |
| build_norm_layer(self.norm_cfg, | |
| in_channels[j])[1], | |
| build_conv_layer( | |
| self.conv_cfg, | |
| in_channels[j], | |
| in_channels[i], | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| bias=False), | |
| build_norm_layer(self.norm_cfg, | |
| in_channels[i])[1])) | |
| else: | |
| conv_downsamples.append( | |
| nn.Sequential( | |
| build_conv_layer( | |
| self.conv_cfg, | |
| in_channels[j], | |
| in_channels[j], | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| groups=in_channels[j], | |
| bias=False), | |
| build_norm_layer(self.norm_cfg, | |
| in_channels[j])[1], | |
| build_conv_layer( | |
| self.conv_cfg, | |
| in_channels[j], | |
| in_channels[j], | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| bias=False), | |
| build_norm_layer(self.norm_cfg, | |
| in_channels[j])[1], | |
| nn.ReLU(inplace=True))) | |
| fuse_layer.append(nn.Sequential(*conv_downsamples)) | |
| fuse_layers.append(nn.ModuleList(fuse_layer)) | |
| return nn.ModuleList(fuse_layers) | |
| def forward(self, x): | |
| """Forward function.""" | |
| if self.num_branches == 1: | |
| return [self.layers[0](x[0])] | |
| if self.module_type.upper() == 'LITE': | |
| out = self.layers(x) | |
| elif self.module_type.upper() == 'NAIVE': | |
| for i in range(self.num_branches): | |
| x[i] = self.layers[i](x[i]) | |
| out = x | |
| if self.with_fuse: | |
| out_fuse = [] | |
| for i in range(len(self.fuse_layers)): | |
| # `y = 0` will lead to decreased accuracy (0.5~1 mAP) | |
| y = out[0] if i == 0 else self.fuse_layers[i][0](out[0]) | |
| for j in range(self.num_branches): | |
| if i == j: | |
| y += out[j] | |
| else: | |
| y += self.fuse_layers[i][j](out[j]) | |
| out_fuse.append(self.relu(y)) | |
| out = out_fuse | |
| if not self.multiscale_output: | |
| out = [out[0]] | |
| return out | |
| class LiteHRNet(BaseBackbone): | |
| """Lite-HRNet backbone. | |
| `Lite-HRNet: A Lightweight High-Resolution Network | |
| <https://arxiv.org/abs/2104.06403>`_. | |
| Code adapted from 'https://github.com/HRNet/Lite-HRNet'. | |
| Args: | |
| extra (dict): detailed configuration for each stage of HRNet. | |
| in_channels (int): Number of input image channels. Default: 3. | |
| conv_cfg (dict): dictionary to construct and config conv layer. | |
| norm_cfg (dict): dictionary to construct and config norm layer. | |
| norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
| freeze running stats (mean and var). Note: Effect on Batch Norm | |
| and its variants only. Default: False | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. | |
| init_cfg (dict or list[dict], optional): Initialization config dict. | |
| Default: | |
| ``[ | |
| dict(type='Normal', std=0.001, layer=['Conv2d']), | |
| dict( | |
| type='Constant', | |
| val=1, | |
| layer=['_BatchNorm', 'GroupNorm']) | |
| ]`` | |
| Example: | |
| >>> from mmpose.models import LiteHRNet | |
| >>> import torch | |
| >>> extra=dict( | |
| >>> stem=dict(stem_channels=32, out_channels=32, expand_ratio=1), | |
| >>> num_stages=3, | |
| >>> stages_spec=dict( | |
| >>> num_modules=(2, 4, 2), | |
| >>> num_branches=(2, 3, 4), | |
| >>> num_blocks=(2, 2, 2), | |
| >>> module_type=('LITE', 'LITE', 'LITE'), | |
| >>> with_fuse=(True, True, True), | |
| >>> reduce_ratios=(8, 8, 8), | |
| >>> num_channels=( | |
| >>> (40, 80), | |
| >>> (40, 80, 160), | |
| >>> (40, 80, 160, 320), | |
| >>> )), | |
| >>> with_head=False) | |
| >>> self = LiteHRNet(extra, in_channels=1) | |
| >>> self.eval() | |
| >>> inputs = torch.rand(1, 1, 32, 32) | |
| >>> level_outputs = self.forward(inputs) | |
| >>> for level_out in level_outputs: | |
| ... print(tuple(level_out.shape)) | |
| (1, 40, 8, 8) | |
| """ | |
| def __init__(self, | |
| extra, | |
| in_channels=3, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN'), | |
| norm_eval=False, | |
| with_cp=False, | |
| init_cfg=[ | |
| dict(type='Normal', std=0.001, layer=['Conv2d']), | |
| dict( | |
| type='Constant', | |
| val=1, | |
| layer=['_BatchNorm', 'GroupNorm']) | |
| ]): | |
| super().__init__(init_cfg=init_cfg) | |
| self.extra = extra | |
| self.conv_cfg = conv_cfg | |
| self.norm_cfg = norm_cfg | |
| self.norm_eval = norm_eval | |
| self.with_cp = with_cp | |
| self.stem = Stem( | |
| in_channels, | |
| stem_channels=self.extra['stem']['stem_channels'], | |
| out_channels=self.extra['stem']['out_channels'], | |
| expand_ratio=self.extra['stem']['expand_ratio'], | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg) | |
| self.num_stages = self.extra['num_stages'] | |
| self.stages_spec = self.extra['stages_spec'] | |
| num_channels_last = [ | |
| self.stem.out_channels, | |
| ] | |
| for i in range(self.num_stages): | |
| num_channels = self.stages_spec['num_channels'][i] | |
| num_channels = [num_channels[i] for i in range(len(num_channels))] | |
| setattr( | |
| self, f'transition{i}', | |
| self._make_transition_layer(num_channels_last, num_channels)) | |
| stage, num_channels_last = self._make_stage( | |
| self.stages_spec, i, num_channels, multiscale_output=True) | |
| setattr(self, f'stage{i}', stage) | |
| self.with_head = self.extra['with_head'] | |
| if self.with_head: | |
| self.head_layer = IterativeHead( | |
| in_channels=num_channels_last, | |
| norm_cfg=self.norm_cfg, | |
| ) | |
| def _make_transition_layer(self, num_channels_pre_layer, | |
| num_channels_cur_layer): | |
| """Make transition layer.""" | |
| num_branches_cur = len(num_channels_cur_layer) | |
| num_branches_pre = len(num_channels_pre_layer) | |
| transition_layers = [] | |
| for i in range(num_branches_cur): | |
| if i < num_branches_pre: | |
| if num_channels_cur_layer[i] != num_channels_pre_layer[i]: | |
| transition_layers.append( | |
| nn.Sequential( | |
| build_conv_layer( | |
| self.conv_cfg, | |
| num_channels_pre_layer[i], | |
| num_channels_pre_layer[i], | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| groups=num_channels_pre_layer[i], | |
| bias=False), | |
| build_norm_layer(self.norm_cfg, | |
| num_channels_pre_layer[i])[1], | |
| build_conv_layer( | |
| self.conv_cfg, | |
| num_channels_pre_layer[i], | |
| num_channels_cur_layer[i], | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| bias=False), | |
| build_norm_layer(self.norm_cfg, | |
| num_channels_cur_layer[i])[1], | |
| nn.ReLU())) | |
| else: | |
| transition_layers.append(None) | |
| else: | |
| conv_downsamples = [] | |
| for j in range(i + 1 - num_branches_pre): | |
| in_channels = num_channels_pre_layer[-1] | |
| out_channels = num_channels_cur_layer[i] \ | |
| if j == i - num_branches_pre else in_channels | |
| conv_downsamples.append( | |
| nn.Sequential( | |
| build_conv_layer( | |
| self.conv_cfg, | |
| in_channels, | |
| in_channels, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| groups=in_channels, | |
| bias=False), | |
| build_norm_layer(self.norm_cfg, in_channels)[1], | |
| build_conv_layer( | |
| self.conv_cfg, | |
| in_channels, | |
| out_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| bias=False), | |
| build_norm_layer(self.norm_cfg, out_channels)[1], | |
| nn.ReLU())) | |
| transition_layers.append(nn.Sequential(*conv_downsamples)) | |
| return nn.ModuleList(transition_layers) | |
| def _make_stage(self, | |
| stages_spec, | |
| stage_index, | |
| in_channels, | |
| multiscale_output=True): | |
| num_modules = stages_spec['num_modules'][stage_index] | |
| num_branches = stages_spec['num_branches'][stage_index] | |
| num_blocks = stages_spec['num_blocks'][stage_index] | |
| reduce_ratio = stages_spec['reduce_ratios'][stage_index] | |
| with_fuse = stages_spec['with_fuse'][stage_index] | |
| module_type = stages_spec['module_type'][stage_index] | |
| modules = [] | |
| for i in range(num_modules): | |
| # multi_scale_output is only used last module | |
| if not multiscale_output and i == num_modules - 1: | |
| reset_multiscale_output = False | |
| else: | |
| reset_multiscale_output = True | |
| modules.append( | |
| LiteHRModule( | |
| num_branches, | |
| num_blocks, | |
| in_channels, | |
| reduce_ratio, | |
| module_type, | |
| multiscale_output=reset_multiscale_output, | |
| with_fuse=with_fuse, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| with_cp=self.with_cp)) | |
| in_channels = modules[-1].in_channels | |
| return nn.Sequential(*modules), in_channels | |
| def forward(self, x): | |
| """Forward function.""" | |
| x = self.stem(x) | |
| y_list = [x] | |
| for i in range(self.num_stages): | |
| x_list = [] | |
| transition = getattr(self, f'transition{i}') | |
| for j in range(self.stages_spec['num_branches'][i]): | |
| if transition[j]: | |
| if j >= len(y_list): | |
| x_list.append(transition[j](y_list[-1])) | |
| else: | |
| x_list.append(transition[j](y_list[j])) | |
| else: | |
| x_list.append(y_list[j]) | |
| y_list = getattr(self, f'stage{i}')(x_list) | |
| x = y_list | |
| if self.with_head: | |
| x = self.head_layer(x) | |
| return (x[0], ) | |
| def train(self, mode=True): | |
| """Convert the model into training mode.""" | |
| super().train(mode) | |
| if mode and self.norm_eval: | |
| for m in self.modules(): | |
| if isinstance(m, _BatchNorm): | |
| m.eval() | |