Spaces:
Running
on
Zero
Running
on
Zero
File size: 39,628 Bytes
ece8251 293e41a ece8251 7d61992 ecc6da9 32ac096 ecc6da9 32ac096 ecc6da9 32ac096 ecc6da9 32ac096 ecc6da9 32ac096 ecc6da9 32ac096 ecc6da9 32ac096 47b459c c5b6385 d4bd238 ece8251 d4bd238 47b459c d4bd238 47b459c d4bd238 47b459c d4bd238 47b459c d4bd238 ece8251 d4bd238 ece8251 d4bd238 ece8251 ef1bc30 1dabcc9 5674b19 ef1bc30 5674b19 ece8251 32ac096 ece8251 5674b19 32ac096 ece8251 ef1bc30 ece8251 ef1bc30 ece8251 32ac096 ece8251 ef1bc30 ece8251 32ac096 ece8251 5674b19 ece8251 32ac096 ef1bc30 ece8251 32ac096 ece8251 ef1bc30 ece8251 ef1bc30 ece8251 ef1bc30 ece8251 293e41a ece8251 32ac096 ece8251 293e41a ece8251 1dabcc9 ece8251 ef1bc30 ece8251 32ac096 ece8251 32ac096 ece8251 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 |
import torch
import spaces
import gradio as gr
import sys
import platform
import diffusers
import transformers
import psutil
import os
import time
import traceback
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from diffusers import ZImagePipeline, AutoModel
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
latent_history = []
# ============================================================
# LOGGING BUFFER
# ============================================================
LOGS = ""
def log(msg):
global LOGS
print(msg)
LOGS += msg + "\n"
return msg
# ============================================================
# SYSTEM METRICS — LIVE GPU + CPU MONITORING
# ============================================================
def log_system_stats(tag=""):
try:
log(f"\n===== 🔥 SYSTEM STATS {tag} =====")
# ============= GPU STATS =============
if torch.cuda.is_available():
allocated = torch.cuda.memory_allocated(0) / 1e9
reserved = torch.cuda.memory_reserved(0) / 1e9
total = torch.cuda.get_device_properties(0).total_memory / 1e9
free = total - allocated
log(f"💠 GPU Total : {total:.2f} GB")
log(f"💠 GPU Allocated : {allocated:.2f} GB")
log(f"💠 GPU Reserved : {reserved:.2f} GB")
log(f"💠 GPU Free : {free:.2f} GB")
# ============= CPU STATS ============
cpu = psutil.cpu_percent()
ram_used = psutil.virtual_memory().used / 1e9
ram_total = psutil.virtual_memory().total / 1e9
log(f"🧠 CPU Usage : {cpu}%")
log(f"🧠 RAM Used : {ram_used:.2f} GB / {ram_total:.2f} GB")
except Exception as e:
log(f"⚠️ Failed to log system stats: {e}")
# ============================================================
# ENVIRONMENT INFO
# ============================================================
log("===================================================")
log("🔍 Z-IMAGE-TURBO DEBUGGING + LIVE METRIC LOGGER")
log("===================================================\n")
log(f"📌 PYTHON VERSION : {sys.version.replace(chr(10),' ')}")
log(f"📌 PLATFORM : {platform.platform()}")
log(f"📌 TORCH VERSION : {torch.__version__}")
log(f"📌 TRANSFORMERS VERSION : {transformers.__version__}")
log(f"📌 DIFFUSERS VERSION : {diffusers.__version__}")
log(f"📌 CUDA AVAILABLE : {torch.cuda.is_available()}")
log_system_stats("AT STARTUP")
if not torch.cuda.is_available():
raise RuntimeError("❌ CUDA Required")
device = "cuda"
gpu_id = 0
# ============================================================
# MODEL SETTINGS
# ============================================================
model_cache = "./weights/"
model_id = "Tongyi-MAI/Z-Image-Turbo"
torch_dtype = torch.bfloat16
USE_CPU_OFFLOAD = False
log("\n===================================================")
log("🧠 MODEL CONFIGURATION")
log("===================================================")
log(f"Model ID : {model_id}")
log(f"Model Cache Directory : {model_cache}")
log(f"torch_dtype : {torch_dtype}")
log(f"USE_CPU_OFFLOAD : {USE_CPU_OFFLOAD}")
log_system_stats("BEFORE TRANSFORMER LOAD")
# ============================================================
# LORA SETTINGS
# ============================================================
# ============================================================
# FUNCTION TO CONVERT LATENTS TO IMAGE
# ============================================================
def latent_to_image(latent):
"""
Convert a latent tensor to a PIL image using pipe.vae
"""
try:
img_tensor = pipe.vae.decode(latent)
img_tensor = (img_tensor / 2 + 0.5).clamp(0, 1)
pil_img = T.ToPILImage()(img_tensor[0].cpu()) # <--- single image
return pil_img
except Exception as e:
log(f"⚠️ Failed to decode latent: {e}")
# fallback blank image
return Image.new("RGB", (latent.shape[-1]*8, latent.shape[-2]*8), color=(255,255,255))
# ============================================================
# SAFE TRANSFORMER INSPECTION
# ============================================================
def inspect_transformer(model, name):
log(f"\n🔍🔍 FULL TRANSFORMER DEBUG DUMP: {name}")
log("=" * 80)
try:
log(f"Model class : {model.__class__.__name__}")
log(f"DType : {getattr(model, 'dtype', 'unknown')}")
log(f"Device : {next(model.parameters()).device}")
log(f"Requires Grad? : {any(p.requires_grad for p in model.parameters())}")
# Check quantization
if hasattr(model, "is_loaded_in_4bit"):
log(f"4bit Quantization : {model.is_loaded_in_4bit}")
if hasattr(model, "is_loaded_in_8bit"):
log(f"8bit Quantization : {model.is_loaded_in_8bit}")
# Find blocks
candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
blocks = None
chosen_attr = None
for attr in candidates:
if hasattr(model, attr):
blocks = getattr(model, attr)
chosen_attr = attr
break
log(f"Block container attr : {chosen_attr}")
if blocks is None:
log("⚠️ No valid block container found.")
return
if not hasattr(blocks, "__len__"):
log("⚠️ Blocks exist but not iterable.")
return
total = len(blocks)
log(f"Total Blocks : {total}")
log("-" * 80)
# Inspect first N blocks
N = min(20, total)
for i in range(N):
block = blocks[i]
log(f"\n🧩 Block [{i}/{total-1}]")
log(f"Class: {block.__class__.__name__}")
# Print submodules
for n, m in block.named_children():
log(f" ├─ {n}: {m.__class__.__name__}")
# Print attention related
if hasattr(block, "attn"):
attn = block.attn
log(f" ├─ Attention: {attn.__class__.__name__}")
log(f" │ Heads : {getattr(attn, 'num_heads', 'unknown')}")
log(f" │ Dim : {getattr(attn, 'hidden_size', 'unknown')}")
log(f" │ Backend : {getattr(attn, 'attention_backend', 'unknown')}")
# Device + dtype info
try:
dev = next(block.parameters()).device
log(f" ├─ Device : {dev}")
except StopIteration:
pass
try:
dt = next(block.parameters()).dtype
log(f" ├─ DType : {dt}")
except StopIteration:
pass
log("\n🔚 END TRANSFORMER DEBUG DUMP")
log("=" * 80)
except Exception as e:
log(f"❌ ERROR IN INSPECTOR: {e}")
import torch
import time
# ---------- UTILITY ----------
def pretty_header(title):
log("\n\n" + "=" * 80)
log(f"🎛️ {title}")
log("=" * 80 + "\n")
# ---------- MEMORY ----------
def get_vram(prefix=""):
try:
allocated = torch.cuda.memory_allocated() / 1024**2
reserved = torch.cuda.memory_reserved() / 1024**2
log(f"{prefix}Allocated VRAM : {allocated:.2f} MB")
log(f"{prefix}Reserved VRAM : {reserved:.2f} MB")
except:
log(f"{prefix}VRAM: CUDA not available")
# ---------- MODULE INSPECT ----------
def inspect_module(name, module):
pretty_header(f"🔬 Inspecting {name}")
try:
log(f"📦 Class : {module.__class__.__name__}")
log(f"🔢 DType : {getattr(module, 'dtype', 'unknown')}")
log(f"💻 Device : {next(module.parameters()).device}")
log(f"🧮 Params : {sum(p.numel() for p in module.parameters()):,}")
# Quantization state
if hasattr(module, "is_loaded_in_4bit"):
log(f"⚙️ 4-bit QLoRA : {module.is_loaded_in_4bit}")
if hasattr(module, "is_loaded_in_8bit"):
log(f"⚙️ 8-bit load : {module.is_loaded_in_8bit}")
# Attention backend (DiT)
if hasattr(module, "set_attention_backend"):
try:
attn = getattr(module, "attention_backend", None)
log(f"🚀 Attention Backend: {attn}")
except:
pass
# Search for blocks
candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
blocks = None
chosen_attr = None
for attr in candidates:
if hasattr(module, attr):
blocks = getattr(module, attr)
chosen_attr = attr
break
log(f"\n📚 Block Container : {chosen_attr}")
if blocks is None:
log("⚠️ No block structure found")
return
if not hasattr(blocks, "__len__"):
log("⚠️ Blocks exist but are not iterable")
return
total = len(blocks)
log(f"🔢 Total Blocks : {total}\n")
# Inspect first 15 blocks
N = min(15, total)
for i in range(N):
blk = blocks[i]
log(f"\n🧩 Block [{i}/{total-1}] — {blk.__class__.__name__}")
for n, m in blk.named_children():
log(f" ├─ {n:<15} {m.__class__.__name__}")
# Attention details
if hasattr(blk, "attn"):
a = blk.attn
log(f" ├─ Attention")
log(f" │ Heads : {getattr(a, 'num_heads', 'unknown')}")
log(f" │ Dim : {getattr(a, 'hidden_size', 'unknown')}")
log(f" │ Backend : {getattr(a, 'attention_backend', 'unknown')}")
# Device / dtype
try:
log(f" ├─ Device : {next(blk.parameters()).device}")
log(f" ├─ DType : {next(blk.parameters()).dtype}")
except StopIteration:
pass
get_vram(" ▶ ")
except Exception as e:
log(f"❌ Module inspect error: {e}")
# ---------- LORA INSPECTION ----------
def inspect_loras(pipe):
pretty_header("🧩 LoRA ADAPTERS")
try:
if not hasattr(pipe, "lora_state_dict") and not hasattr(pipe, "adapter_names"):
log("⚠️ No LoRA system detected.")
return
if hasattr(pipe, "adapter_names"):
names = pipe.adapter_names
log(f"Available Adapters: {names}")
if hasattr(pipe, "active_adapters"):
log(f"Active Adapters : {pipe.active_adapters}")
if hasattr(pipe, "lora_scale"):
log(f"LoRA Scale : {pipe.lora_scale}")
# LoRA modules
if hasattr(pipe, "transformer") and hasattr(pipe.transformer, "modules"):
for name, module in pipe.transformer.named_modules():
if "lora" in name.lower():
log(f" 🔧 LoRA Module: {name} ({module.__class__.__name__})")
except Exception as e:
log(f"❌ LoRA inspect error: {e}")
# ---------- PIPELINE INSPECTOR ----------
def debug_pipeline(pipe):
pretty_header("🚀 FULL PIPELINE DEBUGGING")
try:
log(f"Pipeline Class : {pipe.__class__.__name__}")
log(f"Attention Impl : {getattr(pipe, 'attn_implementation', 'unknown')}")
log(f"Device : {pipe.device}")
except:
pass
get_vram("▶ ")
# Inspect TRANSFORMER
if hasattr(pipe, "transformer"):
inspect_module("Transformer", pipe.transformer)
# Inspect TEXT ENCODER
if hasattr(pipe, "text_encoder") and pipe.text_encoder is not None:
inspect_module("Text Encoder", pipe.text_encoder)
# Inspect UNET (if ZImage pipeline has it)
if hasattr(pipe, "unet"):
inspect_module("UNet", pipe.unet)
# LoRA adapters
inspect_loras(pipe)
pretty_header("🎉 END DEBUG REPORT")
# ============================================================
# LOAD TRANSFORMER — WITH LIVE STATS
# ============================================================
log("\n===================================================")
log("🔧 LOADING TRANSFORMER BLOCK")
log("===================================================")
log("📌 Logging memory before load:")
log_system_stats("START TRANSFORMER LOAD")
try:
quant_cfg = DiffusersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
)
transformer = AutoModel.from_pretrained(
model_id,
cache_dir=model_cache,
subfolder="transformer",
quantization_config=quant_cfg,
torch_dtype=torch_dtype,
device_map=device,
)
log("✅ Transformer loaded successfully.")
except Exception as e:
log(f"❌ Transformer load failed: {e}")
transformer = None
log_system_stats("AFTER TRANSFORMER LOAD")
if transformer:
inspect_transformer(transformer, "Transformer")
# ============================================================
# LOAD TEXT ENCODER
# ============================================================
log("\n===================================================")
log("🔧 LOADING TEXT ENCODER")
log("===================================================")
log_system_stats("START TEXT ENCODER LOAD")
try:
quant_cfg2 = TransformersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
)
text_encoder = AutoModel.from_pretrained(
model_id,
cache_dir=model_cache,
subfolder="text_encoder",
quantization_config=quant_cfg2,
torch_dtype=torch_dtype,
device_map=device,
)
log("✅ Text encoder loaded successfully.")
except Exception as e:
log(f"❌ Text encoder load failed: {e}")
text_encoder = None
log_system_stats("AFTER TEXT ENCODER LOAD")
if text_encoder:
inspect_transformer(text_encoder, "Text Encoder")
# ============================================================
# BUILD PIPELINE
# ============================================================
log("\n===================================================")
log("🔧 BUILDING PIPELINE")
log("===================================================")
log_system_stats("START PIPELINE BUILD")
try:
pipe = ZImagePipeline.from_pretrained(
model_id,
transformer=transformer,
text_encoder=text_encoder,
torch_dtype=torch_dtype,
)
# Prefer flash attention if supported
try:
if hasattr(pipe, "transformer") and hasattr(pipe.transformer, "set_attention_backend"):
pipe.transformer.set_attention_backend("_flash_3")
log("✅ transformer.set_attention_backend('_flash_3') called")
except Exception as _e:
log(f"⚠️ set_attention_backend failed: {_e}")
# 🚫 NO default LoRA here
# 🚫 NO fuse
# 🚫 NO unload
pipe.to("cuda")
log("✅ Pipeline built successfully.")
LOGS += log("Pipeline build completed.") + "\n"
except Exception as e:
log(f"❌ Pipeline build failed: {e}")
log(traceback.format_exc())
pipe = None
log_system_stats("AFTER PIPELINE BUILD")
# -----------------------------
# Monkey-patch prepare_latents (safe)
# -----------------------------
if pipe is not None and hasattr(pipe, "prepare_latents"):
original_prepare_latents = pipe.prepare_latents
def logged_prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
try:
result_latents = original_prepare_latents(batch_size, num_channels_latents, height, width, dtype, device, generator, latents)
log_msg = f"🔹 prepare_latents called | shape={result_latents.shape}, dtype={result_latents.dtype}, device={result_latents.device}"
if hasattr(self, "_latents_log"):
self._latents_log.append(log_msg)
else:
self._latents_log = [log_msg]
return result_latents
except Exception as e:
log(f"⚠️ prepare_latents wrapper failed: {e}")
raise
# apply patch safely
try:
pipe.prepare_latents = logged_prepare_latents.__get__(pipe)
log("✅ prepare_latents monkey-patched")
except Exception as e:
log(f"⚠️ Failed to attach prepare_latents patch: {e}")
else:
log("❌ WARNING: Pipe not initialized or prepare_latents missing; skipping prepare_latents patch")
from PIL import Image
import torch
# --------------------------
# Helper: Safe latent extractor
# --------------------------
def safe_get_latents(pipe, height, width, generator, device, LOGS):
"""
Safely prepare latents for any ZImagePipeline variant.
Returns latents tensor, logs issues instead of failing.
"""
try:
# Determine number of channels
num_channels = 4 # default fallback
if hasattr(pipe, "unet") and hasattr(pipe.unet, "in_channels"):
num_channels = pipe.unet.in_channels
elif hasattr(pipe, "vae") and hasattr(pipe.vae, "latent_channels"):
num_channels = pipe.vae.latent_channels # some pipelines define this
LOGS.append(f"🔹 Using num_channels={num_channels} for latents")
latents = pipe.prepare_latents(
batch_size=1,
num_channels_latents=num_channels,
height=height,
width=width,
dtype=torch.float32,
device=device,
generator=generator,
)
LOGS.append(f"🔹 Latents shape: {latents.shape}, dtype: {latents.dtype}, device: {latents.device}")
return latents
except Exception as e:
LOGS.append(f"⚠️ Latent extraction failed: {e}")
# fallback: guess a safe shape
fallback_channels = 16 # try standard default for ZImage pipelines
latents = torch.randn((1, fallback_channels, height // 8, width // 8),
generator=generator, device=device)
LOGS.append(f"🔹 Using fallback random latents shape: {latents.shape}")
return latents
# --------------------------
# Main generation function (kept exactly as your logic)
# --------------------------
from huggingface_hub import HfApi, HfFolder
import torch
import os
HF_REPO_ID = "rahul7star/Zstudio-latent" # Model repo
HF_TOKEN = HfFolder.get_token() # Make sure you are logged in via `huggingface-cli login`
def upload_latents_to_hf(latent_dict, filename="latents.pt"):
local_path = f"/tmp/{filename}"
torch.save(latent_dict, local_path)
try:
api = HfApi()
api.upload_file(
path_or_fileobj=local_path,
path_in_repo=filename,
repo_id=HF_REPO_ID,
token=HF_TOKEN,
repo_type="model" # since this is a model repo
)
os.remove(local_path)
return f"https://huggingface.co/{HF_REPO_ID}/resolve/main/{filename}"
except Exception as e:
os.remove(local_path)
raise e
import asyncio
import torch
from PIL import Image
async def async_upload_latents(latent_dict, filename, LOGS):
try:
hf_url = await upload_latents_to_hf(latent_dict, filename=filename) # assume this can be async
LOGS.append(f"🔹 All preview latents uploaded: {hf_url}")
except Exception as e:
LOGS.append(f"⚠️ Failed to upload all preview latents: {e}")
# this code genetae all frame for latest GPU expseinve bt decide fails sp use this later
@spaces.GPU
def generate_image_all_latents(prompt, height, width, steps, seed, guidance_scale=0.0):
LOGS = []
device = "cpu" # FORCE CPU
generator = torch.Generator(device).manual_seed(int(seed))
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
latent_gallery = []
final_gallery = []
last_four_latents = [] # we only upload 4
# --------------------------------------------------
# LATENT PREVIEW GENERATION (CPU MODE)
# --------------------------------------------------
try:
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
latents = latents.to("cpu") # keep EVERYTHING CPU
timestep_count = len(pipe.scheduler.timesteps)
preview_every = max(1, timestep_count // 10)
for i, t in enumerate(pipe.scheduler.timesteps):
# -------------- decode latent preview --------------
try:
with torch.no_grad():
latent_cpu = latents.to(pipe.vae.dtype) # match VAE dtype
decoded = pipe.vae.decode(latent_cpu).sample # [1,3,H,W]
decoded = (decoded / 2 + 0.5).clamp(0, 1)
decoded = decoded[0].permute(1,2,0).cpu().numpy()
latent_img = Image.fromarray((decoded * 255).astype("uint8"))
except Exception:
latent_img = placeholder
LOGS.append("⚠️ Latent preview decode failed.")
latent_gallery.append(latent_img)
# store last 4 latent states
if len(last_four_latents) >= 4:
last_four_latents.pop(0)
last_four_latents.append(latents.cpu().clone())
# UI preview yields
if i % preview_every == 0:
yield None, latent_gallery, LOGS
# --------------------------------------------------
# UPLOAD LAST 4 LATENTS (SYNC)
# --------------------------------------------------
try:
upload_dict = {
"last_4_latents": last_four_latents,
"prompt": prompt,
"seed": seed
}
hf_url = upload_latents_to_hf(
upload_dict,
filename=f"latents_last4_{seed}.pt"
)
LOGS.append(f"🔹 Uploaded last 4 latents: {hf_url}")
except Exception as e:
LOGS.append(f"⚠️ Failed to upload latents: {e}")
except Exception as e:
LOGS.append(f"⚠️ Latent generation failed: {e}")
latent_gallery.append(placeholder)
yield None, latent_gallery, LOGS
# --------------------------------------------------
# FINAL IMAGE - UNTOUCHED
# --------------------------------------------------
try:
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
)
final_img = output.images[0]
LOGS.append("✅ Standard pipeline succeeded.")
yield final_img, latent_gallery, LOGS
except Exception as e2:
LOGS.append(f"❌ Standard pipeline failed: {e2}")
yield placeholder, latent_gallery, LOGS
@spaces.GPU
def generate_imagenegative(prompt, height, width, steps, seed, guidance_scale=7.5):
"""
Generate image using ZImagePipeline with optional LoRA adapter.
Shows step previews and final image.
"""
LOGS = []
generator = torch.Generator("cuda").manual_seed(int(seed))
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
latent_gallery = []
final_gallery = []
# Determine active LoRA adapter
active_adapter = None
active_strength = 1.0
if loaded_loras:
active_adapter = list(loaded_loras.keys())[-1]
active_strength = loaded_loras[active_adapter + "_strength"] if loaded_loras.get(active_adapter + "_strength") else 1.0
pipe.set_adapters([active_adapter], [active_strength])
LOGS.append(f"🧩 Using LoRA adapter: {active_adapter} (strength={active_strength})")
else:
pipe.set_adapters([], [])
LOGS.append("⚡ No LoRA applied")
try:
# Generate small preview steps
num_preview_steps = min(5, steps)
for i in range(num_preview_steps):
step = i + 1
try:
preview_output = pipe(
prompt=prompt,
height=height // 4, # small preview
width=width // 4,
num_inference_steps=step,
guidance_scale=guidance_scale,
generator=generator,
)
img = preview_output.images[0].resize((width, height))
latent_gallery.append(img)
except Exception as e:
LOGS.append(f"⚠️ Preview step {step} failed: {e}")
latent_gallery.append(placeholder)
# --- Final image ---
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
)
final_img = output.images[0]
final_gallery.append(final_img)
latent_gallery.append(final_img)
LOGS.append("✅ Image generation completed.")
yield final_img, latent_gallery, LOGS
except Exception as e:
LOGS.append(f"❌ Generation failed: {e}")
latent_gallery.append(placeholder)
final_gallery.append(placeholder)
yield placeholder, latent_gallery, LOGS
@spaces.GPU
def generate_image(prompt, height, width, steps, seed, guidance_scale=0.0):
LOGS = []
device = "cuda"
generator = torch.Generator(device).manual_seed(int(seed))
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
latent_gallery = []
final_gallery = []
# --- Generate latent previews in a loop ---
try:
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
# Convert latents to float32 if necessary
if latents.dtype != torch.float32:
latents = latents.float()
# Loop for multiple previews before final image
num_previews = min(10, steps) # show ~10 previews
preview_steps = torch.linspace(0, 1, num_previews)
for i, alpha in enumerate(preview_steps):
try:
with torch.no_grad():
# Simple noise interpolation for preview (simulate denoising progress)
preview_latent = latents * alpha + torch.randn_like(latents) * (1 - alpha)
# Decode to PIL
latent_img_tensor = pipe.vae.decode(preview_latent).sample # [1,3,H,W]
latent_img_tensor = (latent_img_tensor / 2 + 0.5).clamp(0, 1)
latent_img_tensor = latent_img_tensor.cpu().permute(0, 2, 3, 1)[0]
latent_img = Image.fromarray((latent_img_tensor.numpy() * 255).astype('uint8'))
except Exception as e:
LOGS.append(f"⚠️ Latent preview decode failed: {e}")
latent_img = placeholder
latent_gallery.append(latent_img)
yield None, latent_gallery, LOGS # update Gradio with intermediate preview
# Save final latents to HF
latent_dict = {"latents": latents.cpu(), "prompt": prompt, "seed": seed}
try:
hf_url = upload_latents_to_hf(latent_dict, filename=f"latents_{seed}.pt")
LOGS.append(f"🔹 Latents uploaded: {hf_url}")
except Exception as e:
LOGS.append(f"⚠️ Failed to upload latents: {e}")
except Exception as e:
LOGS.append(f"⚠️ Latent generation failed: {e}")
latent_gallery.append(placeholder)
yield None, latent_gallery, LOGS
# --- Final image: untouched standard pipeline ---
try:
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
)
final_img = output.images[0]
final_gallery.append(final_img)
latent_gallery.append(final_img) # fallback preview if needed
LOGS.append("✅ Standard pipeline succeeded.")
yield final_img, latent_gallery, LOGS
except Exception as e2:
LOGS.append(f"❌ Standard pipeline failed: {e2}")
final_gallery.append(placeholder)
latent_gallery.append(placeholder)
yield placeholder, latent_gallery, LOGS
# this is astable vesopn tha can gen final and a noise to latent
@spaces.GPU
def generate_image_verygood_realnoise(prompt, height, width, steps, seed, guidance_scale=0.0):
LOGS = []
device = "cuda"
generator = torch.Generator().manual_seed(int(seed))
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
latent_gallery = []
final_gallery = []
# --- Generate latent previews ---
try:
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
latents = latents.float() # keep float32 until decode
num_previews = min(10, steps)
preview_steps = torch.linspace(0, 1, num_previews)
for alpha in preview_steps:
try:
with torch.no_grad():
# Simulate denoising progression like Z-Image Turbo
preview_latent = latents * alpha + latents * 0 # optional: simple progression
# Move to same device and dtype as VAE
preview_latent = preview_latent.to(pipe.vae.device).to(pipe.vae.dtype)
# Decode
decoded = pipe.vae.decode(preview_latent, return_dict=False)[0]
# Convert to PIL following same logic as final image
decoded = (decoded / 2 + 0.5).clamp(0, 1)
decoded = decoded.cpu().permute(0, 2, 3, 1).float().numpy()
decoded = (decoded * 255).round().astype("uint8")
latent_img = Image.fromarray(decoded[0])
except Exception as e:
LOGS.append(f"⚠️ Latent preview decode failed: {e}")
latent_img = placeholder
latent_gallery.append(latent_img)
yield None, latent_gallery, LOGS
except Exception as e:
LOGS.append(f"⚠️ Latent generation failed: {e}")
latent_gallery.append(placeholder)
yield None, latent_gallery, LOGS
# --- Final image: untouched ---
try:
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
)
final_img = output.images[0]
final_gallery.append(final_img)
latent_gallery.append(final_img) # fallback preview
LOGS.append("✅ Standard pipeline succeeded.")
yield final_img, latent_gallery, LOGS
except Exception as e2:
LOGS.append(f"❌ Standard pipeline failed: {e2}")
final_gallery.append(placeholder)
latent_gallery.append(placeholder)
yield placeholder, latent_gallery, LOGS
# DO NOT TOUCH this is astable vesopn tha can gen final and a noise to latent with latent upload to repo
@spaces.GPU
def generate_image_safe(prompt, height, width, steps, seed, guidance_scale=0.0):
LOGS = []
device = "cuda"
generator = torch.Generator(device).manual_seed(int(seed))
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
latent_gallery = []
final_gallery = []
# --- Generate latent previews in a loop ---
try:
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
# Convert latents to float32 if necessary
if latents.dtype != torch.float32:
latents = latents.float()
# Loop for multiple previews before final image
num_previews = min(10, steps) # show ~10 previews
preview_steps = torch.linspace(0, 1, num_previews)
for i, alpha in enumerate(preview_steps):
try:
with torch.no_grad():
# Simple noise interpolation for preview (simulate denoising progress)
preview_latent = latents * alpha + torch.randn_like(latents) * (1 - alpha)
# Decode to PIL
latent_img_tensor = pipe.vae.decode(preview_latent).sample # [1,3,H,W]
latent_img_tensor = (latent_img_tensor / 2 + 0.5).clamp(0, 1)
latent_img_tensor = latent_img_tensor.cpu().permute(0, 2, 3, 1)[0]
latent_img = Image.fromarray((latent_img_tensor.numpy() * 255).astype('uint8'))
except Exception as e:
LOGS.append(f"⚠️ Latent preview decode failed: {e}")
latent_img = placeholder
latent_gallery.append(latent_img)
yield None, latent_gallery, LOGS # update Gradio with intermediate preview
# Save final latents to HF
latent_dict = {"latents": latents.cpu(), "prompt": prompt, "seed": seed}
try:
hf_url = upload_latents_to_hf(latent_dict, filename=f"latents_{seed}.pt")
LOGS.append(f"🔹 Latents uploaded: {hf_url}")
except Exception as e:
LOGS.append(f"⚠️ Failed to upload latents: {e}")
except Exception as e:
LOGS.append(f"⚠️ Latent generation failed: {e}")
latent_gallery.append(placeholder)
yield None, latent_gallery, LOGS
# --- Final image: untouched standard pipeline ---
try:
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
)
final_img = output.images[0]
final_gallery.append(final_img)
latent_gallery.append(final_img) # fallback preview if needed
LOGS.append("✅ Standard pipeline succeeded.")
yield final_img, latent_gallery, LOGS
except Exception as e2:
LOGS.append(f"❌ Standard pipeline failed: {e2}")
final_gallery.append(placeholder)
latent_gallery.append(placeholder)
yield placeholder, latent_gallery, LOGS
import gradio as gr
from huggingface_hub import list_repo_files, hf_hub_download
import gradio as gr
import os
# -------------------------
# Helper: Recursive LoRA listing
# -------------------------
from huggingface_hub import list_repo_files
import gradio as gr
from PIL import Image
# ----------------------------
# LIST LoRA FILES HELPER
# ----------------------------
# ----------------------------
# GRADIO UI
# ----------------------------
# -------------------------
# Helper function
# -------------------------
def list_loras_from_repo(repo_id: str):
"""
List all .safetensors files in a Hugging Face repo, including subfolders.
Returns relative paths like 'Anime/retro_neo_noir_style_z_image_turbo.safetensors'
"""
try:
all_files = list_repo_files(repo_id)
safetensors_files = [f for f in all_files if f.endswith(".safetensors")]
return safetensors_files
except Exception as e:
log(f"❌ Failed to list repo files: {e}")
return []
# Keep track of loaded adapters
loaded_loras = {}
# -------------------------
# Gradio UI
# -------------------------
with gr.Blocks(title="Z-Image-Turbo") as demo:
gr.Markdown("# 🎨 Z-Image-Turbo (LoRA-enabled UI)")
# -------------------------
# Tabs
# -------------------------
with gr.Tabs():
# -------- Image & Latents --------
with gr.TabItem("Image & Latents"):
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", value="boat in Ocean")
height = gr.Slider(256, 2048, value=1024, step=8, label="Height")
width = gr.Slider(256, 2048, value=1024, step=8, label="Width")
steps = gr.Slider(1, 50, value=20, step=1, label="Inference Steps")
seed = gr.Number(value=42, label="Seed")
run_btn = gr.Button("🚀 Generate Image")
with gr.Column(scale=1):
final_image = gr.Image(label="Final Image")
latent_gallery = gr.Gallery(label="Latent Steps", columns=4, height=256, preview=True)
# -------- Logs --------
with gr.TabItem("Logs"):
logs_box = gr.Textbox(label="Logs", lines=25, interactive=False)
# -------------------------
# LoRA Controls
# -------------------------
gr.Markdown("## 🧩 LoRA Controls")
with gr.Row():
lora_repo = gr.Textbox(label="LoRA Repo (HF)", value="rahul7star/ZImageLora")
lora_file = gr.Dropdown(label="LoRA file (.safetensors)", choices=[])
lora_strength = gr.Slider(0.0, 2.0, value=1.0, step=0.05, label="LoRA strength")
with gr.Row():
refresh_lora_btn = gr.Button("🔄 Refresh LoRA List")
apply_lora_btn = gr.Button("✅ Apply LoRA")
clear_lora_btn = gr.Button("❌ Clear LoRA")
# -------------------------
# Callbacks
# -------------------------
def refresh_lora_list(repo_name):
files = list_loras_from_repo(repo_name)
if not files:
log(f"⚠️ No LoRA files found in {repo_name}")
return gr.update(choices=[], value=None)
log(f"📦 Found {len(files)} LoRA files in {repo_name}")
return gr.update(choices=files, value=files[0])
refresh_lora_btn.click(refresh_lora_list, inputs=[lora_repo], outputs=[lora_file])
def apply_lora(repo_name, lora_filename, strength):
global pipe, loaded_loras
if pipe is None:
return "❌ Pipeline not initialized"
if not lora_filename:
return "⚠️ No LoRA file selected"
adapter_name = f"ui_lora_{lora_filename.replace('/', '_').replace('.', '_')}"
try:
if adapter_name not in loaded_loras:
pipe.load_lora_weights(repo_name, weight_name=lora_filename, adapter_name=adapter_name)
loaded_loras[adapter_name] = lora_filename
log(f"📥 Loaded LoRA: {lora_filename}")
pipe.set_adapters([adapter_name], [strength])
log(f"✅ Applied LoRA adapter: {adapter_name} (strength={strength})")
return f"LoRA applied: {lora_filename}"
except Exception as e:
log(f"❌ Failed to apply LoRA: {e}")
return f"Failed: {e}"
apply_lora_btn.click(apply_lora, inputs=[lora_repo, lora_file, lora_strength], outputs=[logs_box])
def clear_lora():
global pipe
if pipe is None:
return "❌ Pipeline not initialized"
try:
pipe.set_adapters([], [])
log("🧹 LoRA cleared")
return "LoRA cleared"
except Exception as e:
log(f"❌ Failed to clear LoRA: {e}")
return f"Failed: {e}"
clear_lora_btn.click(clear_lora, outputs=[logs_box])
# -------------------------
# Run Generation
# -------------------------
run_btn.click(
generate_image,
inputs=[prompt, height, width, steps, seed],
outputs=[final_image, latent_gallery, logs_box]
)
demo.launch() |