File size: 5,277 Bytes
853977e 9001913 853977e 9001913 853977e 9001913 853977e 9001913 853977e 9001913 853977e 9001913 853977e 9001913 853977e 9001913 853977e 9001913 853977e 9001913 853977e 9001913 853977e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import argparse
import asyncio
import os
import requests
import uvicorn
from pydantic import BaseModel, Field
from starlette.responses import HTMLResponse
os.environ["PDFTEXT_CPU_WORKERS"] = "1"
import base64
from contextlib import asynccontextmanager
from typing import Optional, Annotated
import io
from fastapi import FastAPI, Body
from marker.convert import convert_single_pdf
from marker.models import load_all_models
app_data = {}
@asynccontextmanager
async def lifespan(app: FastAPI):
if app.state.LOCAL:
app_data["models"] = load_all_models()
yield
if "models" in app_data:
del app_data["models"]
app = FastAPI(lifespan=lifespan)
@app.get("/")
async def root():
return HTMLResponse(
"""
<h1>Marker API</h1>
<ul>
<li><a href="/docs">API Documentation</a></li>
<li><a href="/marker">Run marker (post request only)</a></li>
</ul>
"""
)
class CommonParams(BaseModel):
filepath: Annotated[
str,
Field(description="The path to the PDF file to convert.")
]
max_pages: Annotated[
Optional[int],
Field(description="The maximum number of pages in the document to convert.", example=None)
] = None
langs: Annotated[
Optional[str],
Field(description="The optional languages to use if OCR is needed, comma separated. Must be either the names or codes from from https://github.com/VikParuchuri/surya/blob/master/surya/languages.py.", example=None)
] = None
force_ocr: Annotated[
bool,
Field(description="Force OCR on all pages of the PDF. Defaults to False. This can lead to worse results if you have good text in your PDFs (which is true in most cases).")
] = False
paginate: Annotated[
bool,
Field(description="Whether to paginate the output. Defaults to False. If set to True, each page of the output will be separated by a horizontal rule that contains the page number (2 newlines, {PAGE_NUMBER}, 48 - characters, 2 newlines).")
] = False
extract_images: Annotated[
bool,
Field(description="Whether to extract images from the PDF. Defaults to True. If set to False, no images will be extracted from the PDF.")
] = True
@app.post("/marker")
async def convert_pdf(
params: CommonParams
):
if app.state.LOCAL:
print(f"Converting {params.filepath} locally.")
assert all([
params.extract_images is True,
params.paginate is False,
]), "Local conversion API does not support image extraction or pagination."
return await convert_pdf_local(params)
else:
print(f"Converting {params.filepath} using the Datalab API.")
return await convert_pdf_remote(params)
async def convert_pdf_remote(params: CommonParams):
with open(params.filepath, "rb") as f:
filedata = f.read()
filename = os.path.basename(params.filepath)
form_data = {
'file': (filename, filedata, 'application/pdf'),
'max_pages': (None, params.max_pages),
'langs': (None, params.langs),
'force_ocr': (None, params.force_ocr),
'paginate': (None, params.paginate),
'extract_images': (None, params.extract_images),
}
headers = {"X-API-Key": app.state.API_KEY}
response = requests.post(app.state.DATALAB_URL, files=form_data, headers=headers)
data = response.json()
check_url = data["request_check_url"]
for i in range(300):
await asyncio.sleep(2)
response = requests.get(check_url, headers=headers)
data = response.json()
if data["status"] == "complete":
break
return data
async def convert_pdf_local(params: CommonParams):
try:
full_text, images, metadata = convert_single_pdf(
params.filepath,
app_data["models"],
max_pages=params.max_pages,
langs=params.langs,
ocr_all_pages=params.force_ocr
)
except Exception as e:
return {
"success": False,
"error": str(e),
}
encoded = {}
for k, v in images.items():
byte_stream = io.BytesIO()
v.save(byte_stream, format="PNG")
encoded[k] = base64.b64encode(byte_stream.getvalue()).decode("utf-8")
return {
"markdown": full_text,
"images": encoded,
"metadata": metadata,
"success": True
}
def main():
parser = argparse.ArgumentParser(description='Convert PDFs to markdown.')
parser.add_argument('--port', type=int, default=8000, help='Port to run the server on')
parser.add_argument('--host', type=str, default="127.0.0.1", help='Host to run the server on')
parser.add_argument('--api_key', type=str, default=None, help='API key for the Datalab API. If not specified, API will run locally.')
parser.add_argument("--datalab_url", type=str, default="https://api.datalab.to/api/v1/marker", help="The URL for the Datalab API")
args = parser.parse_args()
app.state.API_KEY = args.api_key
app.state.LOCAL = args.api_key is None
app.state.DATALAB_URL = args.datalab_url
# Run the server
uvicorn.run(
app,
host=args.host,
port=args.port,
)
if __name__ == "__main__":
main() |