Update app.py
Browse files
app.py
CHANGED
|
@@ -2,18 +2,20 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
import numpy as np
|
| 5 |
-
from sam2
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
|
| 8 |
# Download the model weights
|
| 9 |
model_path = hf_hub_download(repo_id="facebook/sam2-hiera-large", filename="sam2_hiera_large.pth")
|
| 10 |
|
| 11 |
-
# Initialize the SAM2
|
| 12 |
-
|
|
|
|
|
|
|
| 13 |
|
| 14 |
def segment_image(input_image, x, y):
|
| 15 |
-
# Convert gradio image to
|
| 16 |
-
input_image =
|
| 17 |
|
| 18 |
# Prepare the image for the model
|
| 19 |
predictor.set_image(input_image)
|
|
@@ -23,15 +25,18 @@ def segment_image(input_image, x, y):
|
|
| 23 |
input_label = np.array([1]) # 1 for foreground
|
| 24 |
|
| 25 |
# Generate the mask
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
# Convert the mask to an image
|
| 30 |
-
mask = masks[0]
|
| 31 |
mask_image = Image.fromarray((mask * 255).astype(np.uint8))
|
| 32 |
|
| 33 |
# Apply the mask to the original image
|
| 34 |
-
result = Image.composite(input_image, Image.new('RGB',
|
| 35 |
|
| 36 |
return result
|
| 37 |
|
|
@@ -39,7 +44,7 @@ def segment_image(input_image, x, y):
|
|
| 39 |
iface = gr.Interface(
|
| 40 |
fn=segment_image,
|
| 41 |
inputs=[
|
| 42 |
-
gr.Image(type="
|
| 43 |
gr.Slider(0, 1000, label="X coordinate"),
|
| 44 |
gr.Slider(0, 1000, label="Y coordinate")
|
| 45 |
],
|
|
|
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
import numpy as np
|
| 5 |
+
from sam2 import build_sam2, SamPredictor
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
|
| 8 |
# Download the model weights
|
| 9 |
model_path = hf_hub_download(repo_id="facebook/sam2-hiera-large", filename="sam2_hiera_large.pth")
|
| 10 |
|
| 11 |
+
# Initialize the SAM2 model
|
| 12 |
+
device = "cpu" # Use CPU
|
| 13 |
+
model = build_sam2(checkpoint=model_path).to(device)
|
| 14 |
+
predictor = SamPredictor(model)
|
| 15 |
|
| 16 |
def segment_image(input_image, x, y):
|
| 17 |
+
# Convert gradio image to numpy array
|
| 18 |
+
input_image = np.array(input_image)
|
| 19 |
|
| 20 |
# Prepare the image for the model
|
| 21 |
predictor.set_image(input_image)
|
|
|
|
| 25 |
input_label = np.array([1]) # 1 for foreground
|
| 26 |
|
| 27 |
# Generate the mask
|
| 28 |
+
masks, _, _ = predictor.predict(
|
| 29 |
+
point_coords=input_point,
|
| 30 |
+
point_labels=input_label,
|
| 31 |
+
multimask_output=False,
|
| 32 |
+
)
|
| 33 |
|
| 34 |
# Convert the mask to an image
|
| 35 |
+
mask = masks[0]
|
| 36 |
mask_image = Image.fromarray((mask * 255).astype(np.uint8))
|
| 37 |
|
| 38 |
# Apply the mask to the original image
|
| 39 |
+
result = Image.composite(Image.fromarray(input_image), Image.new('RGB', mask_image.size, 'black'), mask_image)
|
| 40 |
|
| 41 |
return result
|
| 42 |
|
|
|
|
| 44 |
iface = gr.Interface(
|
| 45 |
fn=segment_image,
|
| 46 |
inputs=[
|
| 47 |
+
gr.Image(type="pil"),
|
| 48 |
gr.Slider(0, 1000, label="X coordinate"),
|
| 49 |
gr.Slider(0, 1000, label="Y coordinate")
|
| 50 |
],
|