Spaces:
Running
Running
Echo-ai
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,15 @@
|
|
| 1 |
import os
|
| 2 |
import requests
|
| 3 |
-
import time
|
| 4 |
from fastapi import FastAPI, HTTPException
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
-
from fastapi.responses import
|
| 7 |
from llama_cpp import Llama
|
| 8 |
from pydantic import BaseModel
|
| 9 |
import uvicorn
|
| 10 |
-
from typing import Generator
|
| 11 |
-
import threading
|
| 12 |
|
| 13 |
# Configuration
|
| 14 |
-
MODEL_URL = "https://huggingface.co/unsloth/DeepSeek-R1-Distill-Qwen-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-
|
| 15 |
-
MODEL_NAME = "DeepSeek-R1-Distill-Qwen-1.5B-
|
| 16 |
MODEL_DIR = "model"
|
| 17 |
MODEL_PATH = os.path.join(MODEL_DIR, MODEL_NAME)
|
| 18 |
|
|
@@ -36,8 +33,8 @@ else:
|
|
| 36 |
# Initialize FastAPI
|
| 37 |
app = FastAPI(
|
| 38 |
title="DeepSeek-R1 OpenAI-Compatible API",
|
| 39 |
-
description="
|
| 40 |
-
version="
|
| 41 |
)
|
| 42 |
|
| 43 |
# CORS Configuration
|
|
@@ -48,68 +45,36 @@ app.add_middleware(
|
|
| 48 |
allow_headers=["*"],
|
| 49 |
)
|
| 50 |
|
| 51 |
-
#
|
| 52 |
-
print("Loading model
|
| 53 |
try:
|
| 54 |
llm = Llama(
|
| 55 |
model_path=MODEL_PATH,
|
| 56 |
-
n_ctx=
|
| 57 |
-
n_threads=
|
| 58 |
-
n_batch=512, # Larger batch size for improved throughput
|
| 59 |
n_gpu_layers=0,
|
| 60 |
-
use_mlock=True, # Prevent swapping to disk
|
| 61 |
verbose=False
|
| 62 |
)
|
| 63 |
-
print("Model loaded
|
| 64 |
except Exception as e:
|
| 65 |
raise RuntimeError(f"Failed to load model: {str(e)}")
|
| 66 |
|
| 67 |
-
#
|
| 68 |
-
def generate_stream(prompt: str, max_tokens: int, temperature: float, top_p: float) -> Generator[str, None, None]:
|
| 69 |
-
start_time = time.time()
|
| 70 |
-
stream = llm.create_completion(
|
| 71 |
-
prompt=prompt,
|
| 72 |
-
max_tokens=max_tokens,
|
| 73 |
-
temperature=temperature,
|
| 74 |
-
top_p=top_p,
|
| 75 |
-
stop=["</s>"],
|
| 76 |
-
stream=True
|
| 77 |
-
)
|
| 78 |
-
|
| 79 |
-
for chunk in stream:
|
| 80 |
-
delta = chunk['choices'][0]['text']
|
| 81 |
-
yield f"data: {delta}\n\n"
|
| 82 |
-
|
| 83 |
-
# Early stopping if taking too long
|
| 84 |
-
if time.time() - start_time > 30: # 30s timeout
|
| 85 |
-
break
|
| 86 |
-
|
| 87 |
-
# OpenAI-Compatible Request Schema
|
| 88 |
-
class ChatCompletionRequest(BaseModel):
|
| 89 |
-
model: str = "DeepSeek-R1-Distill-Qwen-1.5B"
|
| 90 |
-
messages: list[dict]
|
| 91 |
-
max_tokens: int = 256
|
| 92 |
-
temperature: float = 0.7
|
| 93 |
-
top_p: float = 0.9
|
| 94 |
-
stream: bool = False
|
| 95 |
-
|
| 96 |
-
# Enhanced root endpoint with performance info
|
| 97 |
@app.get("/", response_class=HTMLResponse)
|
| 98 |
async def root():
|
| 99 |
return f"""
|
| 100 |
<html>
|
| 101 |
<head>
|
| 102 |
-
<title>DeepSeek-R1
|
| 103 |
<style>
|
| 104 |
body {{ font-family: Arial, sans-serif; max-width: 800px; margin: 20px auto; padding: 0 20px; }}
|
| 105 |
.warning {{ color: #dc3545; background: #ffeef0; padding: 15px; border-radius: 5px; }}
|
| 106 |
-
.info {{ color: #0c5460; background: #d1ecf1; padding: 15px; border-radius: 5px; }}
|
| 107 |
a {{ color: #007bff; text-decoration: none; }}
|
| 108 |
code {{ background: #f8f9fa; padding: 2px 4px; border-radius: 4px; }}
|
| 109 |
</style>
|
| 110 |
</head>
|
| 111 |
<body>
|
| 112 |
-
<h1>DeepSeek-R1
|
| 113 |
|
| 114 |
<div class="warning">
|
| 115 |
<h3>⚠️ Important Notice</h3>
|
|
@@ -119,29 +84,29 @@ async def root():
|
|
| 119 |
3. Set visibility to Private</p>
|
| 120 |
</div>
|
| 121 |
|
| 122 |
-
<div class="info">
|
| 123 |
-
<h3>⚡ Performance Optimizations</h3>
|
| 124 |
-
<ul>
|
| 125 |
-
<li>Quantization: Q4_K_M (optimized speed/quality balance)</li>
|
| 126 |
-
<li>Batch processing: 512 tokens/chunk</li>
|
| 127 |
-
<li>Streaming support with 30s timeout</li>
|
| 128 |
-
<li>8 CPU threads utilization</li>
|
| 129 |
-
</ul>
|
| 130 |
-
</div>
|
| 131 |
-
|
| 132 |
<h2>API Documentation</h2>
|
| 133 |
<ul>
|
| 134 |
<li><a href="/docs">Interactive Swagger Documentation</a></li>
|
| 135 |
<li><a href="/redoc">ReDoc Documentation</a></li>
|
| 136 |
</ul>
|
| 137 |
|
| 138 |
-
<h2>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
<pre>
|
| 140 |
-
curl -
|
| 141 |
-H "Content-Type: application/json" \\
|
| 142 |
-d '{{
|
| 143 |
"messages": [{{"role": "user", "content": "Explain quantum computing"}}],
|
| 144 |
-
"stream": true,
|
| 145 |
"max_tokens": 150
|
| 146 |
}}'
|
| 147 |
</pre>
|
|
@@ -149,26 +114,30 @@ curl -N -X POST "{os.environ.get('SPACE_HOST', 'http://localhost:7860')}/v1/chat
|
|
| 149 |
</html>
|
| 150 |
"""
|
| 151 |
|
| 152 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
@app.post("/v1/chat/completions")
|
| 154 |
async def chat_completion(request: ChatCompletionRequest):
|
| 155 |
try:
|
| 156 |
prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in request.messages])
|
| 157 |
prompt += "\nassistant:"
|
| 158 |
|
| 159 |
-
if request.stream:
|
| 160 |
-
return StreamingResponse(
|
| 161 |
-
generate_stream(
|
| 162 |
-
prompt=prompt,
|
| 163 |
-
max_tokens=request.max_tokens,
|
| 164 |
-
temperature=request.temperature,
|
| 165 |
-
top_p=request.top_p
|
| 166 |
-
),
|
| 167 |
-
media_type="text/event-stream"
|
| 168 |
-
)
|
| 169 |
-
|
| 170 |
-
# Non-streaming response
|
| 171 |
-
start_time = time.time()
|
| 172 |
response = llm(
|
| 173 |
prompt=prompt,
|
| 174 |
max_tokens=request.max_tokens,
|
|
@@ -177,12 +146,8 @@ async def chat_completion(request: ChatCompletionRequest):
|
|
| 177 |
stop=["</s>"]
|
| 178 |
)
|
| 179 |
|
| 180 |
-
return
|
| 181 |
-
|
| 182 |
-
"object": "chat.completion",
|
| 183 |
-
"created": int(time.time()),
|
| 184 |
-
"model": request.model,
|
| 185 |
-
"choices": [{
|
| 186 |
"index": 0,
|
| 187 |
"message": {
|
| 188 |
"role": "assistant",
|
|
@@ -190,32 +155,18 @@ async def chat_completion(request: ChatCompletionRequest):
|
|
| 190 |
},
|
| 191 |
"finish_reason": "stop"
|
| 192 |
}],
|
| 193 |
-
|
| 194 |
"prompt_tokens": len(prompt),
|
| 195 |
"completion_tokens": len(response['choices'][0]['text']),
|
| 196 |
"total_tokens": len(prompt) + len(response['choices'][0]['text'])
|
| 197 |
}
|
| 198 |
-
|
| 199 |
-
|
| 200 |
except Exception as e:
|
| 201 |
raise HTTPException(status_code=500, detail=str(e))
|
| 202 |
|
| 203 |
@app.get("/health")
|
| 204 |
-
|
| 205 |
-
return {
|
| 206 |
-
"status": "healthy",
|
| 207 |
-
"model_loaded": True,
|
| 208 |
-
"performance_settings": {
|
| 209 |
-
"n_threads": llm.params.n_threads,
|
| 210 |
-
"n_ctx": llm.params.n_ctx,
|
| 211 |
-
"n_batch": llm.params.n_batch
|
| 212 |
-
}
|
| 213 |
-
}
|
| 214 |
|
| 215 |
if __name__ == "__main__":
|
| 216 |
-
uvicorn.run(
|
| 217 |
-
app,
|
| 218 |
-
host="0.0.0.0",
|
| 219 |
-
port=7860,
|
| 220 |
-
timeout_keep_alive=300 # Keep alive for streaming connections
|
| 221 |
-
)
|
|
|
|
| 1 |
import os
|
| 2 |
import requests
|
|
|
|
| 3 |
from fastapi import FastAPI, HTTPException
|
| 4 |
from fastapi.middleware.cors import CORSMiddleware
|
| 5 |
+
from fastapi.responses import HTMLResponse
|
| 6 |
from llama_cpp import Llama
|
| 7 |
from pydantic import BaseModel
|
| 8 |
import uvicorn
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Configuration
|
| 11 |
+
MODEL_URL = "https://huggingface.co/unsloth/DeepSeek-R1-Distill-Qwen-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-Q5_K_M.gguf"
|
| 12 |
+
MODEL_NAME = "DeepSeek-R1-Distill-Qwen-1.5B-Q5_K_M.gguf"
|
| 13 |
MODEL_DIR = "model"
|
| 14 |
MODEL_PATH = os.path.join(MODEL_DIR, MODEL_NAME)
|
| 15 |
|
|
|
|
| 33 |
# Initialize FastAPI
|
| 34 |
app = FastAPI(
|
| 35 |
title="DeepSeek-R1 OpenAI-Compatible API",
|
| 36 |
+
description="OpenAI-compatible API for DeepSeek-R1-Distill-Qwen-1.5B",
|
| 37 |
+
version="1.0.0"
|
| 38 |
)
|
| 39 |
|
| 40 |
# CORS Configuration
|
|
|
|
| 45 |
allow_headers=["*"],
|
| 46 |
)
|
| 47 |
|
| 48 |
+
# Load the model
|
| 49 |
+
print("Loading model...")
|
| 50 |
try:
|
| 51 |
llm = Llama(
|
| 52 |
model_path=MODEL_PATH,
|
| 53 |
+
n_ctx=2048,
|
| 54 |
+
n_threads=4,
|
|
|
|
| 55 |
n_gpu_layers=0,
|
|
|
|
| 56 |
verbose=False
|
| 57 |
)
|
| 58 |
+
print("Model loaded successfully!")
|
| 59 |
except Exception as e:
|
| 60 |
raise RuntimeError(f"Failed to load model: {str(e)}")
|
| 61 |
|
| 62 |
+
# Root endpoint with documentation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
@app.get("/", response_class=HTMLResponse)
|
| 64 |
async def root():
|
| 65 |
return f"""
|
| 66 |
<html>
|
| 67 |
<head>
|
| 68 |
+
<title>DeepSeek-R1 OpenAI API</title>
|
| 69 |
<style>
|
| 70 |
body {{ font-family: Arial, sans-serif; max-width: 800px; margin: 20px auto; padding: 0 20px; }}
|
| 71 |
.warning {{ color: #dc3545; background: #ffeef0; padding: 15px; border-radius: 5px; }}
|
|
|
|
| 72 |
a {{ color: #007bff; text-decoration: none; }}
|
| 73 |
code {{ background: #f8f9fa; padding: 2px 4px; border-radius: 4px; }}
|
| 74 |
</style>
|
| 75 |
</head>
|
| 76 |
<body>
|
| 77 |
+
<h1>DeepSeek-R1 OpenAI-Compatible API</h1>
|
| 78 |
|
| 79 |
<div class="warning">
|
| 80 |
<h3>⚠️ Important Notice</h3>
|
|
|
|
| 84 |
3. Set visibility to Private</p>
|
| 85 |
</div>
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
<h2>API Documentation</h2>
|
| 88 |
<ul>
|
| 89 |
<li><a href="/docs">Interactive Swagger Documentation</a></li>
|
| 90 |
<li><a href="/redoc">ReDoc Documentation</a></li>
|
| 91 |
</ul>
|
| 92 |
|
| 93 |
+
<h2>API Endpoints</h2>
|
| 94 |
+
<h3>Chat Completion</h3>
|
| 95 |
+
<p><code>POST /v1/chat/completions</code></p>
|
| 96 |
+
<p>Parameters:</p>
|
| 97 |
+
<ul>
|
| 98 |
+
<li><strong>messages</strong>: List of message objects</li>
|
| 99 |
+
<li><strong>max_tokens</strong>: Maximum response length (default: 128)</li>
|
| 100 |
+
<li><strong>temperature</strong>: Sampling temperature (default: 0.7)</li>
|
| 101 |
+
<li><strong>top_p</strong>: Nucleus sampling threshold (default: 0.9)</li>
|
| 102 |
+
</ul>
|
| 103 |
+
|
| 104 |
+
<h2>Example Request</h2>
|
| 105 |
<pre>
|
| 106 |
+
curl -X POST "{os.environ.get('SPACE_HOST', 'http://localhost:7860')}/v1/chat/completions" \\
|
| 107 |
-H "Content-Type: application/json" \\
|
| 108 |
-d '{{
|
| 109 |
"messages": [{{"role": "user", "content": "Explain quantum computing"}}],
|
|
|
|
| 110 |
"max_tokens": 150
|
| 111 |
}}'
|
| 112 |
</pre>
|
|
|
|
| 114 |
</html>
|
| 115 |
"""
|
| 116 |
|
| 117 |
+
# OpenAI-Compatible Request Schema
|
| 118 |
+
class ChatCompletionRequest(BaseModel):
|
| 119 |
+
model: str = "DeepSeek-R1-Distill-Qwen-1.5B"
|
| 120 |
+
messages: list[dict]
|
| 121 |
+
max_tokens: int = 128
|
| 122 |
+
temperature: float = 0.7
|
| 123 |
+
top_p: float = 0.9
|
| 124 |
+
stream: bool = False
|
| 125 |
+
|
| 126 |
+
# OpenAI-Compatible Response Schema
|
| 127 |
+
class ChatCompletionResponse(BaseModel):
|
| 128 |
+
id: str = "chatcmpl-12345"
|
| 129 |
+
object: str = "chat.completion"
|
| 130 |
+
created: int = 1693161600
|
| 131 |
+
model: str = "DeepSeek-R1-Distill-Qwen-1.5B"
|
| 132 |
+
choices: list[dict]
|
| 133 |
+
usage: dict
|
| 134 |
+
|
| 135 |
@app.post("/v1/chat/completions")
|
| 136 |
async def chat_completion(request: ChatCompletionRequest):
|
| 137 |
try:
|
| 138 |
prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in request.messages])
|
| 139 |
prompt += "\nassistant:"
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
response = llm(
|
| 142 |
prompt=prompt,
|
| 143 |
max_tokens=request.max_tokens,
|
|
|
|
| 146 |
stop=["</s>"]
|
| 147 |
)
|
| 148 |
|
| 149 |
+
return ChatCompletionResponse(
|
| 150 |
+
choices=[{
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
"index": 0,
|
| 152 |
"message": {
|
| 153 |
"role": "assistant",
|
|
|
|
| 155 |
},
|
| 156 |
"finish_reason": "stop"
|
| 157 |
}],
|
| 158 |
+
usage={
|
| 159 |
"prompt_tokens": len(prompt),
|
| 160 |
"completion_tokens": len(response['choices'][0]['text']),
|
| 161 |
"total_tokens": len(prompt) + len(response['choices'][0]['text'])
|
| 162 |
}
|
| 163 |
+
)
|
|
|
|
| 164 |
except Exception as e:
|
| 165 |
raise HTTPException(status_code=500, detail=str(e))
|
| 166 |
|
| 167 |
@app.get("/health")
|
| 168 |
+
def health_check():
|
| 169 |
+
return {"status": "healthy"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
if __name__ == "__main__":
|
| 172 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|