Text2Image2 / app.py
seregasmirnov's picture
stabilityai/stable-diffusion-xl-base-1.0
895b3e6 verified
import gradio as gr
import numpy as np
import random
# import spaces #[uncomment to use ZeroGPU]
from diffusers import StableDiffusionPipeline
from peft import PeftModel, PeftConfig
import torch
from sympy.core.random import choice
from rembg import remove
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
model_id,
lora,
lora_scale,
del_back,
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype, use_safetensors=True)
is_lora = False
if model_id == "CompVis/stable-diffusion-v1-4" and lora == "pepe":
lora_id = "seregasmirnov/pepe-lora"
pipe.unet = PeftModel.from_pretrained(
pipe.unet,
lora_id,
adapter_name="default"
)
is_lora = True
pipe = pipe.to(device)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
if is_lora:
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
cross_attention_kwargs={"scale": lora_scale}
).images[0]
else:
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
if del_back:
image = remove(image)
return image, seed
examples = [
"sticker of a happy cat climbing a tree",
"cute animal",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
neg_examples = ["cat, dog",]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
with gr.Row():
model_id = gr.Dropdown(
choices=["CompVis/stable-diffusion-v1-4", "stabilityai/sdxl-turbo", "stabilityai/stable-diffusion-xl-base-1.0"], info="Choose model")
lora = gr.Dropdown(
choices=["None", "pepe"], info="Choose lora", visible=True)
lora_scale = gr.Slider(
label="scale lora strength",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
visible=False,
info="setup lora strength"
)
def setup_lora(sel_model, sel_lora):
if sel_model == "CompVis/stable-diffusion-v1-4":
if sel_lora == "None":
return [gr.Dropdown(choices=["None", "pepe"], info="Choose lora", visible=True), gr.Slider(visible=False)]
else:
return [gr.Dropdown(choices=["None", "pepe"], info="Choose lora", visible=True), gr.Slider(visible=True)]
else:
return [gr.Dropdown(choices=["None", "pepe"], info="Choose lora", visible=False), gr.Slider(visible=False)]
model_id.change(
fn=setup_lora,
inputs=[model_id, lora],
outputs=[lora, lora_scale])
lora.change(
fn=setup_lora,
inputs=[model_id, lora],
outputs=[lora, lora_scale])
with gr.Row():
del_back = gr.Checkbox(label="Delete background", value=False)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
value="sticker of a happy cat climbing a tree",
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
value="",
)
gr.Examples(examples=neg_examples, inputs=[negative_prompt])
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,#0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=4.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
model_id,
lora,
lora_scale,
del_back,
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()