File size: 10,360 Bytes
2997d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b4c4af
 
 
2997d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import numpy as np
import sys
import torch
from typing import List, Tuple, Union

from stripedhyena.model import StripedHyena
from stripedhyena.sample import sample
from stripedhyena.tokenizer import CharLevelTokenizer

from .scoring import logits_to_logprobs, prepare_batch


class Generator:
    '''
    Adapted from https://github.com/togethercomputer/stripedhyena.

    Modifications include:
    - `generate()` accepts and returns the recurrent cache state, letting the user
      keep track of it across sampling runs.
    - Able to sample with long token prompts in which the cache is initialized with
      recurrent teacher forcing.
    '''
    def __init__(
        self,
        model: StripedHyena,
        tokenizer: CharLevelTokenizer,
        top_k: int = 50,
        top_p: float = 0.7,
        temperature: float = 1.,
    ):
        self.model = model
        self.tokenizer = tokenizer
        self.top_k = top_k
        self.top_p = top_p
        self.temperature = temperature
        self.untils = ['\n\n']

    def generate(
        self,
        device: str,
        input_string: str = None,
        input_ids: torch.tensor = None,
        num_tokens: int = 32,
        cached_generation: bool = True,
        force_prompt_threshold: int = 128,
        print_generation: bool = True,
        verbose: bool = False,
        skip_special_tokens: bool = False,
        stop_at_eos: bool = True,
        max_seqlen: int = None,
        inference_params_dict: dict = None,
    ) -> Tuple[torch.tensor, torch.tensor, dict]:
        """
        A version of the generate() method that enables passing in and that returns the
        `inference_params_dict` for replaying cached sampling from a given state.
        """
        if isinstance(self.tokenizer.eos, int):
            eos_token_ids = torch.LongTensor([self.tokenizer.eos]).to(device)
        else:
            # is a tensor
            eos_token_ids = self.tokenizer.tokenize(self.tokenizer.eos).to(device)

        if input_ids is None:
            input = self.tokenizer.tokenize(input_string)
            if isinstance(input, list):
                input = torch.LongTensor(input).unsqueeze(0).to(device)
            # is a tensor
            else:
                input = input.unsqueeze(0).to(device)

        else:
            input = input_ids
        x = input

        if max_seqlen is not None:
            x = x[:, -max_seqlen :]

        num_tokens = int(num_tokens)
        batch_size = x.shape[0]

        prompt_length = x.shape[1]
        prompt_forcing = prompt_length > force_prompt_threshold
        if prompt_forcing:
            forced_prompt_length = prompt_length - force_prompt_threshold
            x_force = x[:, force_prompt_threshold:]
            x = x[:, :force_prompt_threshold]
        else:
            forced_prompt_length = 0

        generation = torch.empty(
            x.shape[0],
            num_tokens,
            dtype=torch.long,
            device=x.device,
        )

        scores = torch.empty(
            x.shape[0],
            num_tokens,
            self.tokenizer.vocab_size,
            dtype=torch.float,
            device=x.device,
        )

        # Initialize prefilled to False by default
        prefilled = False
        
        if inference_params_dict is not None:
            cached_generation = True
            prefilled = True
            # Ensure that the cached data is loaded on the correct device.
            for key, data in inference_params_dict['mha'].key_value_memory_dict.items():
                inference_params_dict['mha'].key_value_memory_dict[key] = data.to(x.device)
            for key, data in inference_params_dict['hyena'].fir_state_dict.items():
                inference_params_dict['hyena'].fir_state_dict[key] = data.to(x.device)
            for key, data in inference_params_dict['hyena'].state_dict.items():
                inference_params_dict['hyena'].state_dict[key] = data.to(x.device)

        elif cached_generation:
            inference_params_dict = self.model.initialize_inference_params()
            inference_params_dict['mha'].max_batch_size = batch_size
            inference_params_dict['hyena'].max_batch_size = batch_size
            prefilled = False

        if verbose:
            mem_after_tok = torch.cuda.memory_allocated(device=x.device) / 1e9
            print(f'Memory after tokenization: {mem_after_tok} GB')
            print('Starting generation...')
            if input_string is not None:
                print('Prompt: ' + input_string)
            else:
                print(f'Prompt ids: {input_ids} {input_ids.shape}')

        for i in range(forced_prompt_length + num_tokens):
            if prefilled:
                post_prefill = True
            else:
                post_prefill = cached_generation and i > 0

            # prefill then process only the last token
            if post_prefill:
                x = x[:, -1:]
                seqlen_offset = inference_params_dict['mha'].seqlen_offset

                if seqlen_offset == 0:
                    seqlen_offset = input.shape[-1]
                    inference_params_dict['hyena'].seqlen_offset = seqlen_offset
                    inference_params_dict['mha'].seqlen_offset = seqlen_offset
                else:
                    inference_params_dict['mha'].seqlen_offset += 1
                    inference_params_dict['hyena'].seqlen_offset += 1

            # do forward pass with no gradient
            with torch.inference_mode():
                logits, inference_params_dict = self.model(
                    x,
                    inference_params_dict=inference_params_dict,
                )

            last_logits = logits[:, -1]

            if prompt_forcing and i < forced_prompt_length:
                new_idx = x_force[:, i]
            else:
                new_idx = sample(
                    last_logits,
                    top_k=self.top_k,
                    top_p=self.top_p,
                    temperature=self.temperature,
                )

            if stop_at_eos and (generation[0, -2:] == eos_token_ids).all():
                print('Stopping generation at EOS')

            if print_generation and verbose and batch_size == 1:
                print(
                    f'{self.tokenizer.detokenize([new_idx.item()])}',
                    end=' ',
                )

            if prompt_forcing:
                if i >= forced_prompt_length:
                    scores[:, i - forced_prompt_length] = last_logits
                    generation[:, i - forced_prompt_length] = new_idx
            else:
                scores[:, i] = last_logits
                generation[:, i] = new_idx

            if post_prefill:
                x = new_idx[:, None]
            else:
                x = torch.cat([x, new_idx[:, None]], dim=-1)

        if verbose:
            y = self.tokenizer.detokenize_batch(generation[:, : i + 1])

            for until in self.untils:
                if until in y:
                    y = y.split(until)[0]
                    break

            print(f'\nInput: {input_string}, Output: {y}')

            mem_end = torch.cuda.memory_allocated(device=x.device) / 1e9
            print(f'Memory after generation: {mem_end} GB')

        return generation[:, : i + 1], scores[:, : i + 1], inference_params_dict


def generate(
        prompt_seqs: List[str],
        model: StripedHyena,
        tokenizer: CharLevelTokenizer,
        n_tokens: int = 100,
        temperature: float = 0.,
        top_k: int = 1,
        top_p: float = 1.,
        batched: bool = True,
        prepend_bos: bool = False,
        cached_generation: bool = False,
        force_prompt_threshold: int = 128,
        verbose: int = 1,
        device: str = 'cuda:0',
        **kwargs,
) -> Tuple[List[str], List[float]]:
    """
    Performs generation from a list of prompts.
    If all prompts are the same length, this can do batched generation.
    Also supports cached generation for efficient sampling.
    """
    model.eval()

    g = Generator(
        model,
        tokenizer,
        top_k=top_k,
        top_p=top_p,
        temperature=temperature,
    )

    uniform_lengths = all(len(s) == len(prompt_seqs[0]) for s in prompt_seqs)

    if batched and uniform_lengths:
        input_ids_list = [
            prepare_batch(
                prompt_seqs,
                tokenizer,
                prepend_bos=prepend_bos,
                device=device,
            )[0]
        ]
    else:
        if verbose:
            if not uniform_lengths:
                sys.stderr.write('Note: Prompts are of different lengths.\n')
            sys.stderr.write('Note: Will not do batched generation.\n')
        input_ids_list = [
            prepare_batch(
                [ prompt_seq ],
                tokenizer,
                prepend_bos=prepend_bos,
                device=device,
            )[0]
            for prompt_seq in prompt_seqs
        ]

    generated_seqs, generated_scores = [], []
    for input_ids in input_ids_list:
        batch_size = input_ids.shape[0]
        
        output_ids, logits, _ = g.generate(
            input_ids=input_ids,
            num_tokens=n_tokens,
            cached_generation=cached_generation,
            force_prompt_threshold=force_prompt_threshold,
            device=device,
            print_generation=(verbose > 1),
            verbose=(verbose > 1),
            stop_at_eos=False,
        )
        if verbose > 1:
            print('input_ids.shape', input_ids.shape)
            print('output_ids.shape', output_ids.shape)
            print('logits.shape', logits.shape)

        generated_seqs_batch = list(tokenizer.detokenize_batch(output_ids))
        assert len(generated_seqs_batch) == batch_size
        generated_seqs += generated_seqs_batch

        logprobs = logits_to_logprobs(logits, output_ids)
        logprobs = logprobs.float().cpu().numpy()

        generated_scores += [ np.mean(logprobs[idx]) for idx in range(batch_size) ]

    assert len(generated_seqs) == len(generated_scores) == len(prompt_seqs)
    if verbose:
        for seq, score, prompt in zip(generated_seqs, generated_scores, prompt_seqs):
            print(f'Prompt: "{prompt}",\tOutput: "{seq}",\tScore: {score}')

    return generated_seqs, generated_scores