import gradio as gr from transformers import pipeline # Créer le générateur de texte avec un modèle public generator = pipeline("text-generation", model="gpt2") def respond(message, history): history = history or [] # Ajouter le message utilisateur history.append({"role": "user", "content": message}) # Générer une réponse answer = generator(message, max_length=50, do_sample=True)[0]["generated_text"] history.append({"role": "assistant", "content": answer}) # Vider la textbox return "", history # Interface Gradio with gr.Blocks() as demo: chatbot = gr.Chatbot() msg = gr.Textbox(label="Message") msg.submit(respond, [msg, chatbot], [msg, chatbot]) demo.launch() # import gradio as gr