File size: 5,257 Bytes
4c2d0e3
 
 
 
 
 
 
a344ac6
4c2d0e3
4e13a1e
 
 
 
 
 
 
 
 
 
62ff71a
 
4e13a1e
 
10ac12a
4e13a1e
 
62ff71a
 
 
4e13a1e
62ff71a
4e13a1e
 
 
 
 
4c2d0e3
 
4e13a1e
a344ac6
4e13a1e
 
 
4c2d0e3
4e13a1e
4c2d0e3
 
 
 
 
 
 
a344ac6
4c2d0e3
 
 
 
 
 
 
 
 
 
 
 
 
10ac12a
a344ac6
4c2d0e3
 
4e13a1e
4c2d0e3
 
 
 
4e13a1e
4c2d0e3
4e13a1e
a344ac6
 
 
 
4c2d0e3
 
 
4e13a1e
 
4c2d0e3
4e13a1e
4c2d0e3
4e13a1e
 
 
 
 
 
 
62ff71a
 
4e13a1e
 
 
 
62ff71a
4e13a1e
 
 
62ff71a
 
 
 
 
 
10ac12a
 
 
62ff71a
4e13a1e
62ff71a
 
 
a344ac6
 
10ac12a
 
 
62ff71a
 
10ac12a
4e13a1e
 
 
4c2d0e3
4e13a1e
 
 
 
a344ac6
 
62ff71a
a344ac6
 
 
 
 
 
 
 
 
 
62ff71a
 
 
 
 
 
a344ac6
 
 
 
10ac12a
62ff71a
10ac12a
a290ddb
a344ac6
62ff71a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e13a1e
4c2d0e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# ============================================================
# Hugging Face Spaces GPU app
# IMPORTANT:
# - spaces MUST be imported first
# - @spaces.GPU MUST be used directly
# ============================================================

import spaces  # MUST be first

import os
import random
import gc

import gradio as gr
import numpy as np
from PIL import Image

import torch
from diffusers import (
    StableDiffusionPipeline,
    StableDiffusionImg2ImgPipeline,
    EulerAncestralDiscreteScheduler,
)
from transformers import CLIPTokenizer, CLIPTextModel
from huggingface_hub import login

# ============================================================
# Config
# ============================================================
MODEL_ID = "telcom/dee-unlearning-tiny-sd"
REVISION = "main"

HF_TOKEN = os.getenv("HF_TOKEN", "").strip()
if HF_TOKEN:
    login(token=HF_TOKEN)

device = torch.device("cuda")
dtype = torch.float16

IMAGE_SIZE = 512
MAX_SEED = np.iinfo(np.int32).max

# ============================================================
# Load model (once at startup)
# ============================================================
pipe_txt2img = StableDiffusionPipeline.from_pretrained(
    MODEL_ID,
    revision=REVISION,
    torch_dtype=dtype,
    safety_checker=None,
).to(device)

# 🔑 Force tokenizer + text encoder
pipe_txt2img.tokenizer = CLIPTokenizer.from_pretrained(
    MODEL_ID, subfolder="tokenizer"
)
pipe_txt2img.text_encoder = CLIPTextModel.from_pretrained(
    MODEL_ID,
    subfolder="text_encoder",
    torch_dtype=dtype,
).to(device)

# Scheduler
pipe_txt2img.scheduler = EulerAncestralDiscreteScheduler.from_config(
    pipe_txt2img.scheduler.config
)

# Memory optimisations
pipe_txt2img.enable_attention_slicing()
pipe_txt2img.enable_vae_slicing()

try:
    pipe_txt2img.enable_xformers_memory_efficient_attention()
except Exception:
    pass

pipe_txt2img.set_progress_bar_config(disable=True)

# Img2Img pipeline
pipe_img2img = StableDiffusionImg2ImgPipeline(
    **pipe_txt2img.components
).to(device)
pipe_img2img.scheduler = EulerAncestralDiscreteScheduler.from_config(
    pipe_img2img.scheduler.config
)

# ============================================================
# GPU INFERENCE FUNCTION (Spaces requires this)
# ============================================================
@spaces.GPU
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    guidance_scale,
    num_inference_steps,
    init_image,
    strength,
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device=device).manual_seed(seed)

    try:
        with torch.inference_mode():
            if init_image is not None:
                image = pipe_img2img(
                    prompt=prompt,
                    negative_prompt=negative_prompt,
                    image=init_image,
                    strength=float(strength),
                    guidance_scale=float(guidance_scale),
                    num_inference_steps=int(num_inference_steps),
                    generator=generator,
                ).images[0]
            else:
                image = pipe_txt2img(
                    prompt=prompt,
                    negative_prompt=negative_prompt,
                    width=IMAGE_SIZE,
                    height=IMAGE_SIZE,
                    guidance_scale=float(guidance_scale),
                    num_inference_steps=int(num_inference_steps),
                    generator=generator,
                ).images[0]

        return image, f"Seed: {seed}"

    finally:
        gc.collect()
        torch.cuda.empty_cache()

# ============================================================
# UI
# ============================================================
with gr.Blocks(title="Stable Diffusion (512×512)") as demo:
    gr.Markdown("## Stable Diffusion Generator (GPU, 512×512)")

    prompt = gr.Textbox(
        label="Prompt",
        placeholder="Describe the image you want to generate",
        lines=2,
    )

    init_image = gr.Image(
        label="Initial image (optional, enables img2img)",
        type="pil",
    )

    run_button = gr.Button("Generate")
    result = gr.Image(label="Result")
    status = gr.Markdown("")

    with gr.Accordion("Advanced Settings", open=False):
        negative_prompt = gr.Textbox(
            label="Negative prompt",
            value="nsfw, (low quality, worst quality:1.2), watermark, signature, ugly, deformed",
        )
        seed = gr.Slider(0, MAX_SEED, step=1, value=0, label="Seed")
        randomize_seed = gr.Checkbox(True, label="Randomize seed")
        guidance_scale = gr.Slider(1, 20, step=0.5, value=7.5, label="Guidance scale")
        num_inference_steps = gr.Slider(1, 40, step=1, value=30, label="Steps")
        strength = gr.Slider(0.0, 1.0, step=0.05, value=0.7, label="Image strength (img2img)")

    run_button.click(
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            guidance_scale,
            num_inference_steps,
            init_image,
            strength,
        ],
        outputs=[result, status],
    )

demo.queue().launch(server_name="0.0.0.0", server_port=7860)