Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| # Load Model & Tokenizer | |
| MODEL_NAME = "tezodipta/MindEase-Assistant-v0.1" | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
| model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto") | |
| # Function to Generate Response | |
| def generate_response(prompt): | |
| input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) | |
| output = model.generate(input_ids, max_length=200, temperature=0.7, do_sample=True, top_p=0.9) | |
| return tokenizer.decode(output[0], skip_special_tokens=True) | |
| # Gradio UI | |
| interface = gr.Interface( | |
| fn=generate_response, | |
| inputs="text", | |
| outputs="text", | |
| title="MindEase AI Assistant", | |
| description="Chat with a Mental Health AI Assistant", | |
| ) | |
| interface.launch(server_name="0.0.0.0", server_port=7860, share=True) | |