Spaces:
Build error
Build error
| # This powershell script will create a model using the fine tuning dreambooth method. It will require landscape, | |
| # portrait and square images. | |
| # | |
| # Adjust the script to your own needs | |
| # Sylvia Ritter | |
| # variable values | |
| $pretrained_model_name_or_path = "D:\models\v1-5-pruned-mse-vae.ckpt" | |
| $data_dir = "D:\test\squat" | |
| $train_dir = "D:\test\" | |
| $resolution = "512,512" | |
| $image_num = Get-ChildItem $data_dir -Recurse -File -Include *.png | Measure-Object | %{$_.Count} | |
| Write-Output "image_num: $image_num" | |
| $learning_rate = 1e-6 | |
| $dataset_repeats = 40 | |
| $train_batch_size = 8 | |
| $epoch = 1 | |
| $save_every_n_epochs=1 | |
| $mixed_precision="fp16" | |
| $num_cpu_threads_per_process=6 | |
| # You should not have to change values past this point | |
| $output_dir = $train_dir + "\model" | |
| $repeats = $image_num * $dataset_repeats | |
| $mts = [Math]::Ceiling($repeats / $train_batch_size * $epoch) | |
| Write-Output "Repeats: $repeats" | |
| .\venv\Scripts\activate | |
| accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db.py ` | |
| --pretrained_model_name_or_path=$pretrained_model_name_or_path ` | |
| --train_data_dir=$data_dir ` | |
| --output_dir=$output_dir ` | |
| --resolution=$resolution ` | |
| --train_batch_size=$train_batch_size ` | |
| --learning_rate=$learning_rate ` | |
| --max_train_steps=$mts ` | |
| --use_8bit_adam ` | |
| --xformers ` | |
| --mixed_precision=$mixed_precision ` | |
| --cache_latents ` | |
| --save_every_n_epochs=$save_every_n_epochs ` | |
| --fine_tuning ` | |
| --dataset_repeats=$dataset_repeats ` | |
| --save_precision="fp16" | |
| # 2nd pass at half the dataset repeat value | |
| accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db.py ` | |
| --pretrained_model_name_or_path=$output_dir"\last.ckpt" ` | |
| --train_data_dir=$data_dir ` | |
| --output_dir=$output_dir"2" ` | |
| --resolution=$resolution ` | |
| --train_batch_size=$train_batch_size ` | |
| --learning_rate=$learning_rate ` | |
| --max_train_steps=$([Math]::Ceiling($mts/2)) ` | |
| --use_8bit_adam ` | |
| --xformers ` | |
| --mixed_precision=$mixed_precision ` | |
| --cache_latents ` | |
| --save_every_n_epochs=$save_every_n_epochs ` | |
| --fine_tuning ` | |
| --dataset_repeats=$([Math]::Ceiling($dataset_repeats/2)) ` | |
| --save_precision="fp16" | |
| accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db.py ` | |
| --pretrained_model_name_or_path=$output_dir"\last.ckpt" ` | |
| --train_data_dir=$data_dir ` | |
| --output_dir=$output_dir"2" ` | |
| --resolution=$resolution ` | |
| --train_batch_size=$train_batch_size ` | |
| --learning_rate=$learning_rate ` | |
| --max_train_steps=$mts ` | |
| --use_8bit_adam ` | |
| --xformers ` | |
| --mixed_precision=$mixed_precision ` | |
| --cache_latents ` | |
| --save_every_n_epochs=$save_every_n_epochs ` | |
| --fine_tuning ` | |
| --dataset_repeats=$dataset_repeats ` | |
| --save_precision="fp16" | |