Spaces:
Sleeping
Sleeping
| #importing the necessary libraries | |
| import gradio as gr | |
| import numpy as np | |
| import pandas as pd | |
| import re | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| import torch | |
| #Defining the labels of the models | |
| labels = ["Explicit", "Not_Explicit"] | |
| #Defining the models and tokenuzer | |
| model_name = "valurank/finetuned-distilbert-explicit_content_detection" | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| #Reading in the text file | |
| def read_in_text(url): | |
| with open(url, 'r') as file: | |
| article = file.read() | |
| return article | |
| def clean_text(url): | |
| text = url | |
| text = text.encode("ascii", errors="ignore").decode( | |
| "ascii" | |
| ) # remove non-ascii, Chinese characters | |
| text = re.sub(r"\n", " ", text) | |
| text = re.sub(r"\n\n", " ", text) | |
| text = re.sub(r"\t", " ", text) | |
| text = text.strip(" ") | |
| text = re.sub( | |
| " +", " ", text | |
| ).strip() # get rid of multiple spaces and replace with a single | |
| text = re.sub(r"Date\s\d{1,2}\/\d{1,2}\/\d{4}", "", text) #remove date | |
| text = re.sub(r"\d{1,2}:\d{2}\s[A-Z]+\s[A-Z]+", "", text) #remove time | |
| return text | |
| #Defining a function to get the category of the news article | |
| def get_category(file): | |
| text = clean_text(file) | |
| input_tensor = tokenizer.encode(text, return_tensors="pt", truncation=True) | |
| logits = model(input_tensor).logits | |
| softmax = torch.nn.Softmax(dim=1) | |
| probs = softmax(logits)[0] | |
| probs = probs.cpu().detach().numpy() | |
| max_index = np.argmax(probs) | |
| emotion = labels[max_index] | |
| return emotion | |
| #Creating the interface for the radio app | |
| demo = gr.Interface(get_category, inputs=gr.Textbox(label="Drop your articles here"), | |
| outputs = "text", | |
| title="Explicit Content Detection") | |
| #Launching the gradio app | |
| if __name__ == "__main__": | |
| demo.launch(debug=True) |