Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
from torch import Tensor
|
| 2 |
from transformers import AutoTokenizer, AutoModel
|
| 3 |
-
from ctranslate2 import Translator
|
| 4 |
from typing import Union
|
| 5 |
|
| 6 |
from fastapi import FastAPI
|
|
@@ -19,26 +18,11 @@ embeddingTokenizer = AutoTokenizer.from_pretrained(
|
|
| 19 |
'./multilingual-e5-base')
|
| 20 |
embeddingModel = AutoModel.from_pretrained('./multilingual-e5-base')
|
| 21 |
|
| 22 |
-
# chatGpt replacement
|
| 23 |
-
inferenceTokenizer = AutoTokenizer.from_pretrained(
|
| 24 |
-
"./flan-alpaca-gpt4-xl-ct2")
|
| 25 |
-
inferenceTranslator = Translator(
|
| 26 |
-
"./flan-alpaca-gpt4-xl-ct2", compute_type="int8", device="cpu")
|
| 27 |
-
|
| 28 |
|
| 29 |
class EmbeddingRequest(BaseModel):
|
| 30 |
input: Union[str, None] = None
|
| 31 |
|
| 32 |
|
| 33 |
-
class TokensCountRequest(BaseModel):
|
| 34 |
-
input: Union[str, None] = None
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
class InferenceRequest(BaseModel):
|
| 38 |
-
input: Union[str, None] = None
|
| 39 |
-
max_length: Union[int, None] = 0
|
| 40 |
-
|
| 41 |
-
|
| 42 |
app = FastAPI()
|
| 43 |
|
| 44 |
|
|
@@ -62,44 +46,3 @@ async def text_embedding(request: EmbeddingRequest):
|
|
| 62 |
return {
|
| 63 |
'embedding': embeddings[0].tolist()
|
| 64 |
}
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
@app.post('/inference')
|
| 68 |
-
async def inference(request: InferenceRequest):
|
| 69 |
-
input_text = request.input
|
| 70 |
-
max_length = 256
|
| 71 |
-
try:
|
| 72 |
-
max_length = int(request.max_length)
|
| 73 |
-
max_length = min(1024, max_length)
|
| 74 |
-
except:
|
| 75 |
-
pass
|
| 76 |
-
|
| 77 |
-
# process request
|
| 78 |
-
input_tokens = inferenceTokenizer.convert_ids_to_tokens(
|
| 79 |
-
inferenceTokenizer.encode(input_text))
|
| 80 |
-
|
| 81 |
-
results = inferenceTranslator.translate_batch(
|
| 82 |
-
[input_tokens], beam_size=1, max_input_length=0, max_decoding_length=max_length, num_hypotheses=1, repetition_penalty=1.3, sampling_topk=40, sampling_temperature=0.7, use_vmap=False)
|
| 83 |
-
|
| 84 |
-
output_tokens = results[0].hypotheses[0]
|
| 85 |
-
output_text = inferenceTokenizer.decode(
|
| 86 |
-
inferenceTokenizer.convert_tokens_to_ids(output_tokens), skip_special_tokens=True)
|
| 87 |
-
|
| 88 |
-
# create response
|
| 89 |
-
return {
|
| 90 |
-
'generated_text': output_text
|
| 91 |
-
}
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
@app.post('/tokens-count')
|
| 95 |
-
async def tokens_count(request: TokensCountRequest):
|
| 96 |
-
input_text = request.input
|
| 97 |
-
|
| 98 |
-
tokens = inferenceTokenizer.convert_ids_to_tokens(
|
| 99 |
-
inferenceTokenizer.encode(input_text))
|
| 100 |
-
|
| 101 |
-
# create response
|
| 102 |
-
return {
|
| 103 |
-
'tokens': tokens,
|
| 104 |
-
'total': len(tokens)
|
| 105 |
-
}
|
|
|
|
| 1 |
from torch import Tensor
|
| 2 |
from transformers import AutoTokenizer, AutoModel
|
|
|
|
| 3 |
from typing import Union
|
| 4 |
|
| 5 |
from fastapi import FastAPI
|
|
|
|
| 18 |
'./multilingual-e5-base')
|
| 19 |
embeddingModel = AutoModel.from_pretrained('./multilingual-e5-base')
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
class EmbeddingRequest(BaseModel):
|
| 23 |
input: Union[str, None] = None
|
| 24 |
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
app = FastAPI()
|
| 27 |
|
| 28 |
|
|
|
|
| 46 |
return {
|
| 47 |
'embedding': embeddings[0].tolist()
|
| 48 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|